
S-ORAM: A Segmentation-based Oblivious RAM

Jinsheng Zhang
Department of Computer

Science
Iowa State University

Ames, IA, USA
alexzjs@iastate.edu

Wensheng Zhang
Department of Computer

Science
Iowa State University

Ames, Iowa, USA
wzhang@iastate.edu

Daji Qiao
Department of Electrical and

Computer Engineering
Iowa State University

Ames, Iowa, USA
daji@iastate.edu

ABSTRACT
As outsourcing data to remote storage servers gets popular, protect-
ing user’s pattern in accessing these data has become a big concern.
ORAM constructions are promising solutions to this issue, but their
application in practice has been impeded by the high communi-
cation and storage overheads incurred. Towards addressing this
challenge, this paper proposes a segmentation-based ORAM (S-
ORAM). It adopts two segment-based techniques, namely, piece-
wise shuffling and segment-based query, to improve the perfor-
mance of shuffling and query by factoring block size into design.
Extensive security analysis proves that S-ORAM is a highly se-
cure solution with a negligible failure probability of O(N− logN).
In terms of communication and storage overheads, S-ORAM out-
performs the Balanced ORAM (B-ORAM) and the Path ORAM
(P-ORAM), which are the state-of-the-art hash and index based
ORAMs respectively, in both practical and theoretical evaluations.
Particularly under practical settings, the communication overhead
of S-ORAM is 12 to 23 times less than B-ORAM when they have
the same constant-size user-side storage, and S-ORAM consumes
80% less server-side storage and around 60% to 72% less band-
width than P-ORAM when they have the similar logarithmic-size
user-side storage.

Categories and Subject Descriptors
D.0 [Software]: General; E.3 [Data]: Data Encryption

Keywords
Data outsourcing; Access pattern; Privacy; Oblivious RAM

1. INTRODUCTION
Along with the increasing popularity of outsourcing data ser-

vices to remote storage servers, arise also security and privacy con-
cerns. Although encrypting data content has been a common prac-
tice for data protection, it does not fully eliminate the concerns,
because users’ data access pattern is not preserved and researchers
have found that a wide range of private information could be re-
vealed by observing the data access pattern [12].

http://dx.doi.org/10.1145/2590296.2590323.

To address this issue, more and more efficient constructions have
been developed to implement oblivious RAM (ORAM) [6], which
was originally proposed for software protection but also is a prov-
able solution to data access pattern preservation. Among these ef-
forts, hash based ORAMs [6,8–11,13,15,20] utilize hash functions
(including ordinary hash functions, cuckoo hash functions, bloom
filters, etc.) to distribute data blocks to storage locations when data
is stored or shuffled and to look up intended data blocks when data
is queried. In comparison, index based ORAMs [16–19] maintain
index structures to record the mapping between data blocks and
locations and facilitate data lookup at the query time.

Though a large variety of techniques has been proposed and
adopted, most existing ORAM constructions are still not applicable
in practice because of the high communication and/or storage over-
heads incurred. Particularly, hash based ORAMs require a large
extra storage space at the server side to deal with hash collisions;
hence, access pattern privacy usually has to be preserved via heavy
data retrievals and complicated data shuffling. Index based ORAMs
rely on index structures to avoid the above problems. However,
they fail to provide an efficient solution with which the index struc-
tures can be stored in a space-efficient manner and meanwhile can
be searched and updated in a time-efficient manner. This limitation
has also impeded their applications in practice.

We propose a novel ORAM scheme, called segmentation-based
oblivious RAM (S-ORAM), aiming to bring theoretical ORAM con-
structions one step closer to practical applications. Our proposal is
motivated by the observation that a large-scale storage system (e.g.,
a cloud storage system such as Amazon S3 [2]) usually stores data
in blocks and such a block typically has a large size [18], but most
existing ORAM constructions treat data blocks as atomic units for
query and shuffling, and do not factor block size into their de-
signs. S-ORAM is designed to make better use of the large block
size by introducing two segment-based techniques, namely, piece-
wise shuffling and segment-based query, to improve the efficiency
in data shuffling and query. With piece-wise shuffling, data can
be perturbed across a larger range of blocks in a limited user-side
storage; this way, the shuffling efficiency can be improved, and
the improvement gets more significant as the block size increases.
With segment-based query, S-ORAM organizes the data storage at
the server side as a hierarchy of single-segment and multi-segment
layers, and an encrypted index block is introduced to each segment.
With these two techniques at the core, together with a few supple-
mentary algorithms for distributing blocks to segments, S-ORAM
can accomplish efficient query with only O(logN) communication
overhead and a constant user-side storage, while existing ORAM
constructions have to use a larger user-side storage to achieve the
same level of communication efficiency in query.

Extensive security analysis has been conducted to verify the se-

147

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright © 2014 ACM 978-1-4503-2800-5/14/06…$15.00.

curity of the proposed S-ORAM. Particularly, S-ORAM has been
shown to be a provably highly secure solution that has a negligible
failure probability of O(N− logN), which is no higher than that of
existing ORAM constructions.

In terms of communication and storage overheads, S-ORAM
outperforms the Balanced ORAM (B-ORAM) [13] and the Path
ORAM (P-ORAM) [19], which are the best known theoretical hash-
based and practical index-based ORAMs under small local storage
assumption, respectively. Particularly, under practical settings [18]
where the number of data blocks N ranges from 220 to 236 and the
block size is 32 KB to 256 KB, (i) the communication overhead
of S-ORAM is 12 to 23 times less than B-ORAM when they have
the same constant-size user-side storage; (ii) S-ORAM consumes
80% less server-side storage and around 60% to 72% less band-
width than P-ORAM when they have the similar logarithmic-size
user-side storage.

The rest of the paper is organized as follows. Section 2 briefly re-
views existing ORAM constructions. In Section 3, the basic system
model and threat model are described, and a formal security defi-
nition is provided. Our proposed S-ORAM is described in detail
in Section 4. The subsequent Section 5 provides the security and
overhead analysis as well as the comparisons between S-ORAM
and two representative existing ORAM constructions. Finally, Sec-
tion 6 concludes the paper.

2. RELATED WORK
In the past decades, there are numerous ORAM schemes pro-

posed to hide user’s pattern of access to remote data storage. We
roughly classify them into two categories based on the data lookup
technique used. From each category, one representative ORAM
with the best performance among its peers is chosen to be com-
pared with S-ORAM in Section 5.3.

• Hash based ORAMs: A number of ORAMs [6, 8–11, 13, 15,
20] belong to this category. With hash functions used for
data lookup, these ORAMs require facilities such as buck-
ets and stashes to deal with hash collisions. To the best of
our knowledege, the Balanced ORAM (B-ORAM) [13] pro-
posed by Kushilevitz et. al. achieves the best asymptotical
communication efficiency among hash based ORAMs.

• Index based ORAMs: For ORAMs [16–19] belonging to this
category, an index structure is used for data lookup. There-
fore, it requires that the user-side storage stores the index,
which is feasible only if the number of data blocks is not
quite large. When the user-side storage cannot afford to store
the index, it can outsource the index to the server in a way
similar to storing real data blocks at the cost of increased
communication overhead. The Path ORAM (P-ORAM) [19]
proposed by Stefanov et. al. is a representative scheme in
this category.

2.1 B-ORAM
In B-ORAM, the server-side storage is organized as a hybrid hi-

erarchy with a total of logN
log logN

layers, where each layer consists of
logN equal-size sublayers. For the top O(log logN) layers, the
bucket-hash structure [6] proposed by Goldreich and Ostrovsky is
deployed and the remaining layers are cuckoo-hash structures with
a shared stash [8]. Since each layer is extended to multiple sublay-
ers, the shuffling frequency is reduced while the query overhead is
increased; a balance is struck between the query and shuffling over-
heads. The randomized shellsort [7] is selected as the underlying
oblivious sorting algorithm for the shuffling process. In theory, the

amortized communication overhead of B-ORAM is O
(

log2 N
log logN

)
blocks per query. In practice, however, the overhead is on the mag-
nitude of log3 N due to a large constant ignored in the above big-O
notation; particularly, querying one data block may require the user
to access at least 1000 data blocks, which may not be acceptable in
many practical applications.

2.2 P-ORAM
In P-ORAM, the server-side storage is organized as a binary tree

in which each node contains a constant-size bucket for storing data
blocks. Initially, data are randomly stored at leaf nodes, and an
index structure is maintained to record the mapping between the
IDs of data blocks and the IDs of the leaf nodes storing the blocks.
Based on the index, a data query process retrieves all blocks on
the path that contains the query target block and then moves the
target block to the root node. In addition, a background eviction
process is performed after each query process, to gradually evict
blocks from the root node to nodes of lower-height so as to avoid
or reduce node overflowing. The index can also be outsourced to
the server and stored in a similar binary tree. Besides, to keep
bucket size constant at each node, a user-side storage whose size
is a logarithmic function of the number of data blocks is needed
to form a stash. P-ORAM achieves a communication overhead of
O
(

log2 N
log(Z/ logN)

)
· ω(1) blocks per query, where Z is data block

size and ω(1) is a security parameter. Though the communication
overhead is considered to be acceptable in practice [19], the over-
head of server-side storage, which is about 32N blocks, may pose
as a big cost to the user.

Note that, other ORAM constructions such as the partition based
ORAM [18], PrivateFS [21], and the single-round ORAM [22], ei-
ther are based on different user-side storage assumptions than ours
or focus on aspects other than bandwidth and storage efficiency,
which is the main focus of our work. Due to these prominent dif-
ferences, we do not compare them with our proposed S-ORAM.

3. PROBLEM STATEMENT

3.1 System Model
Similar to existing ORAM constructions [6,8–11,13,15,20], we

consider a system composed of a user and a remote storage server.
The user exports a large amount of data to store at the server, and
wishes to hide from the server the pattern of his/her accesses to the
data. Data are assumed to be stored and accessed in the unit of
blocks, and the typical size of a block ranges from 32 KB to 256
KB [18]. Let N denote the total number of data blocks exported by
the user. For simplicity, we assume logN is an even number.

Each data request from the user, which the user wishes to keep
private, can be one of the following types:

• read a data block D of unique ID i from the storage, denoted
as a 3-tuple (read, i,D); or

• write/modify a data block D of unique ID i to the storage,
denoted as a 3-tuple (write, i,D).

To accomplish a data request, the user may need to access the
remote storage multiple times. Each access to the remote storage,
which is observable by the server, can be one of the following types:

• retrieve (read) a data block D from a location l at the remote
storage, denoted as a 3-tuple (read, l,D); or

• upload (write) a data block D to a location l at the remote
storage, denoted as a 3-tuple (write, l,D).

148

3.2 Threat Model
We assume the user is trusted but the remote server is not. Par-

ticularly, the server is assumed to be honest but curious; that is, it
behaves correctly in storing data and serving users’ data accesses,
but it may attempt to figure out the user’s access pattern. The net-
work connection between the user and the server is assumed to be
secure; in practice, this can be achieved using well-known tech-
niques such as SSL [4].

We inherit the standard security definition of ORAMs [6, 18,
19] to define the security of our proposed ORAM. Intuitively, an
ORAM system is considered secure if the server learns nothing
about the user’s data access pattern. More precisely, it is defined
as follows:

Definition Let x⃗ = ⟨ (op1, i1, D1), (op2, i2, D2), · · · ⟩ denote
a private sequence of the user’s intended data requests, where each
op is either a read or write operation. Let A(x⃗) = ⟨ (op′1, l1, D′

1),
(op′2, l2, D

′
2), · · · ⟩ denote the sequence of the user’s accesses to

the remote storage (observed by the server), in order to accomplish
the user’s intended data requests. An ORAM system is said to be
secure if (i) for any two equal-length private sequences x⃗ and y⃗ of
the intended data requests, their corresponding observable access
sequences A(x⃗) and A(y⃗) are computationally indistinguishable;
and (ii) the probability that the ORAM system fails to operate is
negligibly small, i.e., O(N− logN).

4. SCHEME

4.1 Overview
The design of S-ORAM is motivated by the observation that a

large-scale storage system usually stores data in blocks and such a
block typically has a large size. To the best of our knowledge, most
existing ORAM constructions treat data blocks as atomic units for
query and shuffling, and do not factor block size into their designs.
The recently proposed index-based ORAM constructions [5, 16–
19] have used large-size blocks to store indices to improve index
search efficiency; still, more opportunities wait to be explored to
fully utilize this feature.

S-ORAM is designed to make better use of the large block size
to improve the efficiency in data shuffling and query, which are two
critical operations in an ORAM system. Specifically, we propose
the following two segment-based techniques:

• Piece-wise Shuffling. In S-ORAM, each data block is seg-
mented into smaller pieces, and in a shuffling process, data is
shuffled in the unit of pieces rather than blocks. As we know,
data shuffling has to be performed at the user-side storage in
order to achieve obliviousness. With the same size of user-
side storage, shuffling data in pieces rather than blocks en-
ables data perturbation across a larger range of blocks. This
way, the shuffling efficiency can be improved, and the im-
provement gets more significant as the block size increases.

• Segment-based Query. In order to improve query efficiency,
S-ORAM organizes the data storage at the server side as a hi-
erarchy of single-segment and multi-segment layers. In each
segment, an encrypted index block (with the same size as a
data block) is introduced to maintain the mapping between
data block IDs and their locations within the segment. This
way, when a user needs to access a block in a segment, he/she
only needs to access two blocks - the index block and the in-
tended block. By adopting this technique together with sup-
plementary algorithms for distributing blocks to segments, S-
ORAM can accomplish efficient query with only O(logN)

communication overhead and a constant user-side storage,
while existing ORAM constructions have to use a larger user-
side storage to achieve the same level of communication ef-
ficiency in query.

The following sections elaborate the details of the proposed S-
ORAM construction, emphasizing on the above two techniques.

4.2 Storage Organization and Initialization

4.2.1 Data Block Format
Similar to existing ORAMs, S-ORAM stores data in blocks, and

a data block is the basic unit for read/write operations by the user.
A plain-text data block can be split into pieces and each piece is
z = logN bits long, where N is the total number of data blocks.
The first piece contains the ID of the data block, say i, which is also
denoted as di,1. The remaining pieces store the content of the data
block, denoted as di,2, di,3, · · · , di,P−1. Before being exported
to the remote storage server, the plain-text data block is encrypted
piece by piece with a secret key k, as shown in Figure 1:

ci,0 = Ek(ri), where ri is a random number;
ci,1 = Ek(ri ⊕ di,1);

ci,2 = Ek(ci,1 ⊕ di,2);

· · · ,
ci,P−1 = Ek(ci,P−2 ⊕ di,P−1).

(1)

Thus, the encrypted data block (denoted as Di and hereafter called
data block for brevity) has the following format:

Di = (ci,0, ci,1, ci,2, · · · , ci,P−1). (2)

It contains P pieces and has Z = z · P bits.

id
i

=1, 2,id 1, −Pid

i
D

bitszbitsz

1,ic 2,ic 1, −Pic0,ic

bits

i
r

)(⋅
k

E

3,ic

3,idPlain-text Block

)(⋅
k

E)(⋅
k

E)(⋅
k

E)(⋅
k

E

)(PzZ ⋅=Z

Figure 1: Format of a data block in S-ORAM.

4.2.2 Server-side Storage
S-ORAM stores data at the remote server in a pyramid-like struc-

ture as shown in Figure 2. The top layer, called layer 1, is an array
containing at most four data blocks. The rest of the layers are di-
vided into two groups as follows.

T1 (Tier 1) Layers: Single-Segment Layers. T1-layers refer to
those between (inclusive) layer 2 and layer L1 = ⌊2 log logN⌋. As
illustrated in Figure 3, each T1-layer consists of a single segment,
which includes an encrypted index block Il and 2l+1 data blocks.
Among the data blocks, at most half of them are real data blocks
as formatted in Figure 1, while the rest are dummy blocks each

149

…
…

I

Layer ……

D D

D DD D DD DD

3
2

I D D D

112
+L

1L

Layer

Layer

1

2

Layer 11 +L ……I D D ……I D D

…
…

…
…

…
…

Layer 2L ……I D D ……I D D……

N
2log3⋅

(single-segment

layers)

Tier 1

(multi-segment

layers)

Tier 2

=

+

+

N
W

L

L 2

1

1
log

2 1

1

N
2log3 ⋅

=

N

N
W

L 2log2
segments

segments

D D

Figure 2: Organization of the server-side storage.

……

l
I D D D

12
1 −+l

D

Data ID Location Access bit

1 5 0

6 42 0

…

205 0

1,205
c 2,205

c
1,205 −Pc0,205

c

0 9 0

0 1200 0

…

1
2

+l

E
n

cr
y
p

te
d

 w
it

h
 k

e
y
k

Figure 3: Structure of a T1-layer.

with ID 0 and randomly-stuffed content. The index block has 2l+1

entries; each entry corresponds to a data block in the segment which
consists of three fields: ID of the data block, location of the data
block in the segment, and access bit indicating whether the block
has been accessed since it was placed to the location.

T2 (Tier 2) Layers: Multi-Segment Layers. T2-layers refer to
those between (inclusive) layer L1 + 1 and layer L2, where L2 =

logN . Each T2-layer consists of Wl = ⌈ 2l

log2 N
⌉ segments, and

each T2-layer segment has the same format as a T1-layer segment
except that a T2-layer segment contains 3 log2 N data blocks.

Note that, in the above storage structure, a segment (regard-
less whether at a T1-layer or T2-layer) contains at most 3 log2 N
data blocks. Therefore, the index block of a segment has at most
3 log2 N entries. As each entry contains three fields: ID of the data
block (needing logN bits), location of the data block in the segment
(needing log(3 log2 N) bits), and access bit, an index block needs
at most 3 log2 N [logN+log(3 log2 N)+1] bits. In practice, with
N ≤ 236 which is considered large enough to accommodate most
practical applications, the size of an index block is less than 32 KB,
which can fit into a typical data block assumed in the existing stud-
ies of practical ORAM schemes [18].

4.2.3 User-side Storage
The user organizes its local storage into two parts: cache (tempo-

rary storage) and permanent storage. Cache is used to buffer and
process (including encrypt and decrypt) data blocks downloaded
from the server. We assume that the size of the cache is αZ bits
where α is a constant. In the S-ORAM design presented in this
section, we set α = 2. This design can be conveniently adapted
to other configurations of cache size, as will be discussed in Sec-
tion 5.3.

Permanent storage stores the user’s secret information, including
(i) a query counter keeping track of the number of queries that have
been issued, (ii) a secret key k, and (iii) a one-way hash function
Hl(·) for each T2-layer l, which maps a data block to one of the
segments belonging to the layer. Note that, the size of permanent
storage is much smaller than that of the cache, since only several
hundreds of bits are needed to store the query counter, secret key,
and hash functions.

4.2.4 Storage Initialization
The user initializes the S-ORAM system as follows:

• It randomly selects a secret key k and a one-way hash func-
tion HL2(·) of layer L2, i.e., the bottom layer.

• N plain-text data blocks are encrypted into blocks Di where
i = 1, · · · , N with the secret key k in the format illustrated
by Figure 1. In addition, 2N dummy blocks are randomly
generated and encrypted also with key k.

• N real data blocks and 2N dummy blocks are uploaded to
layer L2 of the server storage in a delicate manner to ensure
that (i) each real data block Di of unique ID i is distributed
to segment HL2(i) at layer L2, (ii) each segment is assigned
with exactly 3 log2 N data blocks, and (iii) data blocks dis-
tributed to the same segment are randomly placed within the
segment. Note that, a process like data shuffling elaborated
in Section 4.4.4 can be adopted to distribute and place the
data blocks to satisfy the above properties.

Besides, the user upload a dummy block D to the server and let the
server know it is a dummy block.

4.3 Data Query
As formally described in Algorithm 1, the process for querying

a data block Dt of ID t consists of the following four phases.
In Phase I, the user retrieves and decrypts all data blocks stored

at layer 1, attempting to find Dt in the layer.
In Phase II, each non-empty T1-layer l is accessed sequentially.

Specifically, the index block Il of the layer is first retrieved and de-
crypted, and then one of the following two operations is performed:

• If Dt has not been found at any layer prior to layer l and
Il indicates that Dt is at layer l, record the location where
Dt resides, set the access bit of the location to 1, and re-
encrypt and upload Il to save cache space. Then, retrieve
Dt. Meanwhile, the server makes a copy of user uploaded
dummy block D to the location where Dt was retrieved.

• Otherwise, the location of a dummy block Dt′ whose access
bit in Il is 0 (i.e., it has not been accessed since last time
it was distributed to its current location) is randomly picked
and recorded. After the block’s access bit is set to 1 in Il,
Il is re-encrypted and uploaded. Then, Dt′ is retrieved and
discarded. The server also makes a copy of dummy block D
to fill in this location.

150

Algorithm 1 Query data block Dt of ID t.
1: found← false

/* Phase I: access layer 1 */
2: Retrieve & decrypt blocks in layer 1
3: if Dt is found in layer 1 then found← true

/* Phase II: access T1-layers */
4: for each non-empty layer l ∈ {2, · · · , L1} do
5: Retrieve & decrypt Il – index block of the layer
6: if (found = false ∧ t ∈ Il) then
7: Set the access bit of Dt to 1 in Il
8: Re-encrypt & upload Il
9: Retrieve & decrypt Dt

10: found← true
11: else
12: Randomly pick a dummy Dt′ with access bit 0
13: Set the access bit of Dt′ to 1 in Il
14: Re-encrypt & upload Il
15: Retrieve & discard Dt′

16: end if
17: end for

/* Phase III: access T2-layers */
18: for each non-empty layer l ∈ {L1 + 1, · · · , L2} do
19: if (found = false) then
20: s← Hl(t)
21: else
22: s is randomly picked from {0, · · · ,Wl − 1}
23: end if
24: Retrieve & decrypt Isl – index block of segment s
25: if (found = false ∧ t ∈ Isl) then
26: Set the access bit of Dt to 1 in Isl
27: Re-encrypt & upload Isl
28: Retrieve & decrypt Dt

29: found← true
30: else
31: Randomly find a dummy Dt′ with access bit 0
32: Set the access bit of Dt′ to 1 in Isl
33: Re-encrypt & upload Isl
34: Retrieve & discard Dt′

35: end if
36: end for

/* Phase IV: wrap up */
37: if (Dt is found in layer 1) then
38: Encrypt an extra dummy D in local storage
39: else
40: Re-encrypt Dt in local storage
41: end if
42: Upload all blocks in local storage back to layer 1

In Phase III, each non-empty T2-layer l is accessed sequentially
as follows.

• If Dt has not been found at any layer prior to layer l, segment
s = Hl(t) of layer l is picked to access. The index block
Isl of the segment is first retrieved and decrypted to check
whether Dt is at this segment. If so, the access bit of Dt

is set to 1 in Isl before Isl is encrypted and uploaded; then,
Dt is retrieved, server fill up Dt’s original location with a
copy of dummy block D. Else, the user randomly selects a
dummy block Dt′ in this segment whose access bit in Isl is
0; after the access bit of Dt′ is set to 1, Isl is re-encrypted
and uploaded; then, Dt′ is retrieved and discarded, while a
copy of dummy block D is filled in Dt′ ’s original location.

• If Dt has already been found at a layer prior to layer l, a seg-
ment is randomly selected from layer l and the user randomly
selects a dummy block Dt′ in this segment whose access bit
in Isl is 0. After the access bit of Dt′ is set to 1, Isl is re-
encrypted and uploaded. Then, Dt′ is retrieved, discarded,
and a copy of dummy block D is filled in Dt′ ’s original lo-
cation.

Finally in Phase IV, the user wraps up the query process to en-
sure that Dt is at layer 1, i.e., the top layer. To achieve this, the
user first checks whether Dt has been found at layer 1. If so, add
a dummy block D to local storage, re-encrypt all blocks in local
storage (including Dt and all blocks fetched from layer 1), and up-
load them back to layer 1; otherwise, the user directly re-encrypts
all blocks in local storage and uploads them back to layer 1.

4.4 Data Shuffling
A critical step in S-ORAM is data shuffling which is used to per-

turb data block locations. It may occur at all layers of the storage
hierarchy. Specifically, data shuffling at layer l (l = 2, · · · , L2−1)
is triggered when the total number of queries that have been pro-
cessed is an odd multiple of 2l (i.e., a multiple of 2l but not a mul-
tiple of 2l+1). At this moment, layer l is empty because: (i) it was
empty immediately after data shuffling for some layer l′, where
l′ > l, has completed; (ii) since then, only 2l queries have been
processed, and during this course no data block has been added to
this layer. During data shuffling at layer l, all data blocks in layers
{1, · · · , l − 1} are re-distributed randomly to layer l, and dummy
blocks may be introduced to make layer l full. Data shuffling at
layer L2, i.e., the bottom layer, however, is triggered when the total
number of processed queries is any multiple of 2L2 ; it re-distributes
all real data blocks and selected dummy blocks in the entire hierar-
chy to fully occupy the bottom layer.

4.4.1 Preliminary: A Segment-Shuffling Algorithm
Compared to existing ORAM schemes, S-ORAM utilizes the

user cache space more efficiently to speed up data shuffling. Specif-
ically, the user cache is divided into four parts:

• π, which is a buffer to store a permutation of up to 2m2 in-
puts and thus needs 2m2 log(2m2) bits, where m is a system
parameter.

• B0, B1, and B2, which are three buffers and each may tem-
porarily store up to 2m2 data pieces.

Recall that the size of a data piece is z bits and the size of user
cache is αZ. Therefore, the following relation shall hold between
m, z, α, and Z:

2m2 · [log(2m2) + 3z] ≤ αZ. (3)

Data shuffling in S-ORAM is based on a segment-shuffling al-
gorithm (as shown in Algorithm 2). It is able to shuffle n (≤
3 log2 N) data blocks with a communication cost of O(n) data
blocks, by setting the system parameter m to

√
1.5 logN , under

the following practical assumptions: (1) N ≤ 236 which is consid-
ered large enough to accommodate most practical applications [18];
(2) the size of Z is between 32 KB and 256 KB which is typically
assumed in practical ORAM schemes [18]; and (3) α = 2 meaning
that a small local cache of two data blocks is assumed. It is easy to
verify that, under these assumptions, Equation (3) holds. Moreover,
as n ≤ 3 log2 N = 2m2, π is large enough to store a permutation
of the IDs of n data blocks, and B0, B1, and B2 are large enough
to store n data pieces, which are required in the algorithm.

151

The segment-shuffling algorithm has two phases. Phase I pro-
cesses the first two data pieces of all n blocks as follows. After the
first two pieces of all n blocks are retrieved, IDs of the blocks are
obtained and permuted according to a newly picked permutation
function, and then re-encrypted using the key and newly-picked
random numbers. After that, the new random numbers are up-
loaded after being encrypted, which is followed by the uploading
of the shuffled and re-encrypted block IDs.

In Phase II, the remaining pieces of all n blocks are retrieved,
shuffled according to the new permutation function (newly picked
in Phase I), re-encrypted, and then uploaded back to the server.
This phase runs iteratively and the (v + 1)-st pieces are retrieved
and processed at the v-th (v = 1, · · · , P−2) iteration. Particularly,
when the (v+1)-st pieces are retrieved, two encrypted versions of
the v-th pieces are present in the user cache. Using the key and
the older version of the v-th pieces, the plain-text embedded in the
(v + 1)-st pieces are obtained; then, the pieces are permuted, and
re-encrypted using the same key and the newer version of the v-
th pieces, before being uploaded back to the server. At the end of
the iteration, two encrypted versions of the (v + 1)-st pieces are
left in the user cache, which will be used in the processing of the
(v + 2)-nd pieces in the next iteration.

4.4.2 Shuffling a T1-layer l (2 ≤ l ≤ L1)
When a T1-layer l is to be shuffled, all the blocks belonging to

the layers above shall be shuffled and distributed to layer l, which
has 4 + 22+1 + · · · + 2l = 2l+1 − 4 blocks in total. The server
first makes 4 copies of dummy block D such that the total num-
ber of blocks to be shuffled is 2l+1. Then, the segment-shuffling
algorithm is invoked to shuffle these blocks to layer l.

Algorithm 2 Segment-Shuffling of Blocks (Di1 , · · · , Din).
/* Phase I: shuffling first two pieces of all blocks */

1: Retrieve (ci1,0, · · · , cin,0) to B0

2: Decrypt B0 to (ri1,0, · · · , rin,0) using k
3: Retrieve (ci1,1, · · · , cin,1) to B1

4: Decrypt B1 to (i1, · · · , in) using k and B0

5: Store (i1, · · · , in) in B2

6: Pick & store a random permutation in π
7: Permute B2 to (i′1, · · · , i′n) according to π
8: Generate, re-encrypt & upload entries of a new index block

based on B2 and π
9: for each i′j in B2 do

10: Randomly picks r′i′j
11: Encrypt r′i′j to c′i′j ,0

using k, and upload it

12: Encrypt i′j to c′i′j ,1
using k and c′i′j ,0

13: end for
14: Upload B2 to designated locations

/* Phase II: shuffling remaining pieces of all blocks */
15: for each v ∈ {2, · · · , P − 1} do
16: Retrieve (ci1,v, · · · , cin,v) to B0

17: for each j ∈ {1, · · · , n} do
18: Decrypt cij ,v to dij ,v using k and cij ,v−1 in B1

19: Replace cij ,v−1 in B1 by cij ,v from B0

20: Replace cij ,v by dij ,v in B0

21: end for
22: Permute B0 to (di′1,v, · · · , di′n,v) according to π

23: Encrypt (di′1,v, · · · , di′n,v) in B0 using k and B2

24: Replace B2 by B0

25: Upload B2 to designated locations
26: end for

4.4.3 Shuffling a T2-layer l (L1 < l < L2)
Similar to a T1-layer, when a T2-layer l (excluding the bottom

layer L2) is to be shuffled, all the blocks belonging to the layers
above shall be shuffled and distributed to layer l. The total number
of these blocks is w = 4+22+1+ · · ·+2L1+1+3 ·2L1+1+ · · ·+
3 · 2l−1 which is less than 3 · 2l. Note that, among these blocks,
the number of real data blocks is at most 2l as data shuffling is
triggered every 2l queries.

Before shuffling, the user updates the hash function Hl(·) used
for layer l. Then, it uploads a dummy block to the server, and
requests the server to make 4 · 2l − w copies of the dummy block
to be temporarily stored at layer l. This way, the total number of
data blocks to be shuffled becomes 4 · 2l, among which there are at
most 2l real data blocks.

Data shuffling at layer l consists of the following three rounds of
scanning and two rounds of oblivious sorting.

Round I: Scanning. Blocks are retrieved, labeled, re-encrypted,
and then uploaded. Labeling obeys the following rules: (i) Each
block is labeled with a tuple of two tags; (ii) Each real data block
of ID i has Hl(i) as its first-tag and its second-tag is 0; (iii) Dummy
blocks are labeled in such a way that exactly 3 log2 N dummy
blocks have j as their first-tag for each j ∈ {1, · · · , ⌈ 2l

log2 N
⌉}

while all other dummy blocks have∞ as their first-tag. All dummy
blocks have∞ as the second-tag.

Round II: Oblivious Sorting. All the labeled blocks are sorted
obliviously (using the oblivious data sorting scheme presented in
Section 4.4.5 and the Appendix) in the non-descending order based
on the tag-tuple. Particularly, a block with a smaller first-tag should
precede ones with larger first-tags; blocks with the same first-tag
are sorted in the non-descending order based on the second-tag.
This way, real data blocks are sorted to precede dummy blocks.

Round III: Scanning. The sorted sequence of blocks is scanned
and divided into segments each containing 3 log2 N blocks. A
counter is used to facilitate the process. Specifically, the follow-
ing rule is applied when a block is scanned:

• If the block is the very first one or it has a different first-tag
from its immediate predecessor, it becomes the first one of a
new segment, and the counter is reset to 1.

• Otherwise: If the counter is less than 3 log2 N , the counter is
incremented by 1. If the counter reaches 3 log2 N , the block
is considered redundant and hence its first-tag is relabeled as
∞, which means this block is a redundant dummy blocks.

Round IV: Oblivious Sorting. This round sorts all the redun-
dant blocks (i.e., those with ∞ as the first-tag) to the end of the
sequence. Similar to Round II, this is achieved by obliviously sort-
ing the blocks in the non-decreasing order based on the tag-tuple.
Then, the redundant blocks are removed.

Round V: Scanning. This round is to rebuild an index block for
each segment. For each segment formed in the previous round, the
segment-shuffling algorithm is applied to distribute the 3 log2 N
data blocks back to the server.

4.4.4 Shuffling the Bottom Layer L2

Every time when the number of queries is a multiple of 2L2 =
N , layer L2 needs to be shuffled, which means the entire storage
shall be shuffled and all blocks from every layer shall participate in
data shuffling. Hence, the total number of blocks to be shuffled is
w′ = 4+22+1+· · ·+2L1+1+3·2L1+1+· · ·+3·2L2−1+3·2L2 <
6N .

Similar to the shuffling of other T2-layers, there are also three
rounds of scanning and two rounds of oblivious sorting to accom-

152

plish layer L2 shuffling. To be more specific, Round I scanning and
Round II oblivious sorting are performed on w′ < 6N blocks in-
stead of 4 ·2l blocks in T2-layer shuffling. After Round II oblivious
sorting, only the first 4N blocks participate in Rounds III, IV, and
V; therefore, they are identical to the ones in T2-layer shuffling.

4.4.5 Oblivious Data Sorting
Existing oblivious sorting techniques for ORAMs with constant

local storage either incurs high asymptotical overhead (for exam-
ple, Batcher’s sorting network [3] incurs O(n log2 n) communi-
cation overhead) or large hidden constant behind the big-O nota-
tions (e.g., AKS sorting network [1] incurs c · n logn communi-
cation overhead with c ≥ 103 and randomized shellsort [7] incurs
> 24 · n logn overhead), which significantly impede their practi-
cal efficiency. Hence, a more practically efficient sorting method is
needed.

In S-ORAM, we develop an m-way oblivious sorting scheme
based on the m-way sorting algorithm in [14]. It sorts data in
pieces rather than blocks, which exploits the user cache space more
efficiently and thus achieves a better performance than the afore-
mentioned algorithms, particularly when the block size is relatively
large (which is common in practice [18]). Modifications have also
been made to the original m-way sorting algorithm to ensure the
obliviousness of data sorting. Details of the proposed m-way obliv-
ious sorting scheme are omitted due to space limitation. Please
refer to the Appendix for a complete description.

5. ANALYSIS

5.1 Security Analysis
To prove the security of S-ORAM, we describe three lemmas

before presenting the main theorem.

LEMMA 1. When shuffling a T2-layer l, the probability that
more than 1.5 log2 N real data blocks are distributed to any given
segment is O(N− logN).

PROOF. When shuffling a T2-layer l as in Section 4.4.3, up to 2l

real data blocks are mapped (by a hash function) to ⌈ 2l

log2 N
⌉ seg-

ments uniformly at random. In the following proof, we first assume
the number of real data blocks is 2l and compute the probability
that there exists a segment with at least 1.5 log2 N real blocks.

Let us consider a particular segment, and define X1, · · · , X2l as
random variables such that

Xi =

{
1 the ithreal block mapped to the segment,
0 otherwise. (4)

Note that, X1, · · · , X2l are independent of each other, and hence
for each Xi, Pr[Xi = 1] = 1

2l/log2 N
= log2 N

2l
. Let X =∑2l

i=1 Xi. The expectation of X is

E[X] = E

 2l∑
i=1

Xi

 =

2l∑
i=1

E[Xi] = 2l · log
2 N

2l
= log2 N.

(5)
According to the multiplicative form of Chernoff bound, for any
j ≥ E[X] = log2 N , it holds that

Pr[at least j real data blocks in this particular segment]

= Pr[X ≥ j] <
(
eδ−1

δδ

)log2 N

,
(6)

where δ = j
log2 N

. By applying the union bound, we can obtain

Pr[∃ a segment with at least j real data blocks]

<
2l

log2 N
·
(
eδ−1

δδ

)log2 N

.
(7)

Further considering that 2l ≤ N , it follows that

Pr[∃ a segment with at least 1.5 log2 N real data blocks]

<
N

log2 N
·
(

e0.5

1.51.5

)log2 N

= O(N− logN).
(8)

When the number of real blocks is less than 2l, obviously, the
above probability is also O(N− logN). Therefore, the lemma is
proved.

LEMMA 2. (Failure probability of S-ORAM). The probability
that the S-ORAM construction fails is O(N− logN). Particularly,
a data query or shuffling process will never fail on any T1-layer; a
data query or shuffling process on a T2-layer may fail with proba-
bility O(N− logN).

PROOF. The S-ORAM construction fails if a query or shuffling
process fails.

A data query process fails only if: (Q1) the process fails to
find the target data block; or (Q2) the process fails to find a non-
accessed dummy block on a layer when it needs to retrieve one
according to the query algorithm. As the storage server is assumed
to be honest, case (Q1) will not occur. Case (Q2) will not occur
when the query process is accessing a T1-layer, due to the follow-
ing reasons: Each layer l contains 2l+1 blocks, among which the
number of dummy blocks is at least 2l; since the data blocks in the
layer are shuffled once every 2l queries, there must exist at least
one non-accessed dummy block for each of the 2l queries.

A data shuffling process for layer l fails only if: (S1) layer over-
flow occurs, i.e., the process tries to store more data blocks to the
layer than its capacity; or (S2) segment overflow occurs when layer
l is a T2-layer, i.e., the process tries to store more than 3 log2 N real
data blocks to a segment. As discussed in Sections 4.4.2, case (S1)
will not occur when shuffling a T1-layer l because the total number
of blocks to be shuffled is 2l+1, which is the capacity of the layer.
According to Section 4.4.3, case (S1) will not occur when shuffling
a T2-layer l, because Round IV of the shuffling algorithm marks
and removes redundant blocks to make the total number of blocks
less than the capacity of the layer.

Hence, we only need to study the probability for cases (Q2) and
(S2) to occur on a T2-layer.

Case (Q2) occurring on a T2-layer l means that a query pro-
cess fails to find a non-accessed dummy block on a segment of the
layer. This can only happen in one of the following two scenarios:
(i) more than 1.5 log2 N real data blocks are distributed to this seg-
ment, or (ii) more than 1.5 log2 N dummy data blocks are accessed
from this segment since last time the blocks were shuffled. Accord-
ing to Lemma 1, scenario (i) occurs with probability O(N− logN).
As the selections of dummy blocks during the query processes are
also randomly distributed among all segments of the layer, which is
the same as the distribution of real data blocks to the segments dur-
ing the shuffling process, the probability for scenario (ii) to occur
is also O(N− logN). Hence, the probability for case (Q2) to occur
is O(N− logN).

When case (S2) occurs on a T2-layer, there must be at least one
segment of the layer distributed with more than 3 log2 N blocks.
The probability that this case occurs is smaller than the probability
that at least one segment of the layer is distributed with at least

153

1.5 log2 N blocks, which is O(N− logN). Hence, the probability
for case (S2) to occur is also O(N− logN).

To summarize, the probability that the S-ORAM construction
fails is O(N− logN).

LEMMA 3. (Random and non-repeated location access in S-
ORAM). In S-ORAM, a query process accesses locations from each
non-empty layer l (l > 1) in a random and non-repeated manner.
Here, the non-repeatedness means that, a data block is accessed
for at most once between two consecutive shuffling processes that
involve the block.

PROOF. When layer l is a T1-layer, there are two cases. Case
1.1. If the query target data block Dt has not been found at any
layer prior to layer l, and layer l contains Dt, Dt is accessed. Due
to the randomness of the hash function Hl(·) used to distribute
data blocks to locations, the location of Dt is randomly distributed
among all the locations of layer l. Hence, the access is random.
Also, Dt must not have been accessed since last time it was in-
volved in data shuffling; otherwise, the block must have been a
query target of an earlier query and then moved to layer 1 already.
Hence, the access is also non-repeated. Case 1.2. Otherwise, a non-
access dummy block is randomly selected to access, which makes
the access to be random and non-repeated.

When layer l is a T2-layer, there are following cases. Case 2.1.
If the query target Dt has not been found at any layer prior to layer
l, a segment s = Hl(t) of layer l is picked to access. Due to
the randomness of the hash function Hl(·), the selection of s is
random. Then:

• If Dt is in segment s, the block is accessed. As the shuffling
process randomly permutes blocks within the same segment,
the access of Dt within segment s is random. The access is
also non-repeated due to the same reasoning as in Case 1.1.

• If Dt is not in segment s, a non-accessed dummy block is
randomly picked to access in the segment. Hence, the access
is random and non-repeated.

Case 2.2. If the query target Dt has already been found above
layer l, segment s is randomly selected and a non-accessed dummy
block is randomly picked and accessed in the selected segment.
Hence, the access is random and non-repeated.

THEOREM 1. S-ORAM is secure under the security definition
in Section 3.2.

PROOF. Given any two equal-length sequence x⃗ and y⃗ of data
requests, their corresponding observable access sequences A(x⃗)
and A(y⃗) are computationally indistinguishable, because of the fol-
lowing reasons:

• Firstly, according to the query algorithm, sequences A(x⃗)
and A(y⃗) should have the same format; that is, they contain
the same number of accesses, and each pair of corresponding
accesses have the same format.

• Secondly, all blocks in the storage of S-ORAM are random-
ized encrypted and each block is re-encrypted after each ac-
cess. Hence, the two sequences could not be distinguished
based on the appearance of blocks.

• Thirdly, according to the query algorithm, the j-th accesses
(j = 1, · · · , |A(x⃗)|) of the A(x⃗) and A(y⃗) are from the same
non-empty layer of the storage; and according to Lemma 3,
the locations accessed from the layer are random and non-
repeated in both sequences.

Also, according to Lemma 2, the S-ORAM construction fails with
probability O(N− logN), which is considered negligible and no
larger than the failure probability of existing ORAMs [6, 8–11, 13,
15–20].

5.2 Overhead Analysis
We analyze the overhead of S-ORAM including bandwidth con-

sumption (i.e., communication overhead), user-side storage over-
head, and server-side storage overhead.

The server-side storage in S-ORAM is no more than 6N ·Z bits
at any time. Note that a storage of at most 6N · Z bits is needed
only when shuffling layer L2, i.e., the bottom layer; for all other
layers, a storage of at most 3N · Z bits is needed. The user-side
storage is constant; specifically, it is 2 · Z bits.

The bandwidth consumption consists of two parts: query over-
head Q(N) and shuffling overhead S(N), which are analyzed next.

The query overhead includes the retrieval and uploading of up
to four data blocks for layer 1 and one data block (i.e., the index
block) for each non-empty layer. Hence, the maximum communi-
cation cost Q(N) is the retrieval and uploading of 1.5 logN + 2
blocks per query.

When shuffling a T1-layer l of 2l+1 data blocks, each data block
is processed once in the user cache. Hence, the communication cost
is the retrieval and uploading of 2l+1 blocks.

When shuffling a T2-layer l of n = 4 · 2l data blocks or the bot-
tom layer L2 of n < 6N data blocks, the shuffling process includes
three rounds of scanning and two rounds of oblivious sorting. The
scanning rounds can be integrated into the oblivious sorting rounds.
Specifically, Round I (scanning round) can be performed side-by-
side with the segment-sorting (line 2 of Algorithm 3) of Round II
(oblivious sorting round). Round III (scanning round) can be per-
formed concurrently with the last step of merging (line 19 of Algo-
rithm 5) in Round II. Similarly, Round V (the third scanning round)
can also be performed concurrently with the last step of merging in
Round IV (oblivious sorting round). This way, the shuffling cost
becomes the cost for two rounds of oblivious sorting.

Next, we compute the cost of m-way obliviously sorting n data
blocks. With Algorithm 3, n blocks are divided into n

2m2 subsets
of equal size. These subsets are sorted at the user cache and then
recursively merged into a large sorted set by Algorithm 5. During
each merging phase, every m smaller sorted subsets are merged
into one larger sorted subset. Thus, there is a total of logm

n
2
− 1

merging phases needed to form the final sorted set. Let G(m, s)
denote the number of times that each block is retrieved and then
uploaded during a merging phase, where m smaller sorted subsets
are merged into one larger sorted subset and each smaller subset
contains s data blocks.

We have the following recursive relation:

G(m, s) = G
(
m,

s

m

)
+ 2. (9)

This is because, during the merging phase, each block should (i)
perform another phase of merging in which smaller subsets each
containing s/m blocks are merged into subsets of s blocks (line
10 in Algorithm 5), incurring G(m, s

m
) times of retrieval and up-

loading for each block, and then (ii) perform steps 13-20 in Algo-
rithm 5, incurring 2 times of retrieval and uploading of each block.
Hence, each data block should be retrieved and uploaded for

T (n) =

logm
n
2
−1∑

i=1

G(m, 2mi+1) =
(
logm

n

2
− 1

)2

(10)

times during the entire shuffling process.

154

As shuffling is performed periodically at layers, the amortized
shuffling overhead consists of the following:

• Each T1-layer l (2 ≤ l ≤ L1) is shuffled once every time
when an odd multiple of 2l queries have been made, and
each of the 2l data blocks at T1-layer l is scanned once for
every shuffling. Hence, the amortized overhead is Sl(N) =
2l+1

2l+1 = 1 block scanning per query.

• Each T2-layer l (L1 < l < L2), except the bottom layer L2,
is shuffled also once every time when an odd multiple of 2l

queries have been made, and two rounds of oblivious sorting
are performed on 4 · 2l data blocks. Hence, the amortized
overhead is Sl(N) = 2·4·2l·T (4·2l)

2l+1 = 4 · T (4 · 2l) block
scannings per query.

• The bottom layer L2 is shuffled every time when a multi-
ple of N queries have been made, and two rounds of oblivi-
ous sorting are performed. The first oblivious sorting is per-
formed on w < 6N blocks and second one is performed on
4N . Hence, the amortized overhead is at most SL2(N) =
6N·T (6N)

N
+ 4N·T (4N)

N
= 6 · T (6N) + 4 · T (4N) block

scannings per query.

Therefore, amortized shuffling overhead S(N) is:

S(N) =

L1∑
l=2

Sl(N)+

L2−1∑
l=L1+1

Sl(N)+SL2(N) = O

(
log3 N

log2 m

)
.

To summarize, the bandwidth consumption for S-ORAM is

Q(N) + S(N) = O

(
log3 N

log2 m

)
. (11)

5.3 Overhead Comparison
We now compare the performance of S-ORAM with that of B-

ORAM and P-ORAM from both theoretical and practical aspects.
The theoretical results of bandwidth, user-side storage and server-
side storage overheads are denoted as Tb, Tc, and Ts, and the prac-
tical results as Pb, Pc, and Ps, respectively. The practical settings
used here are as follows: the number of data blocks N ranges from
220 to 236 and the block size ranges from 32 KB to 256 KB, which
are similar to the practical settings adopted in [18]. In the compar-
isons, system parameter α in S-ORAM may be set to a value other
than 2. If α ̸= 2, the scheme presented in Section 4 can be modified
to accommodate this by simply setting parameter m to the largest
integer satisfying Equation (3).

S-ORAM B-ORAM

Tb O(log3 N
log2(Z/logN)

· Z) O(log2 N
log logN

· Z)

Tc O(Z) O(Z)
Ts O(N · Z) O(N · Z)

Pb c log2 N · Z(0.599 ≤ c ≤ 0.978) > 60 log2 N
log logN

· Z
Pc 512 KB 512 KB
Ps ≤ 6N · Z ≥ 8N · Z

Table 1: Performance Comparison: S-ORAM vs. B-ORAM

5.3.1 S-ORAM vs. B-ORAM
In order to compare S-ORAM with B-ORAM, the user cache

size is set to 512 KB in both constructions.

S-ORAM P-ORAM

Tb O(log3 N
log2(Z/logN)

· Z) O(log2 N
log(Z/logN)

· Z) · ω(1)
Tc O(Z) O(logN · Z) · ω(1)
Ts O(N · Z) O(N · Z)

Table 2: Theoretical Performances: S-ORAM vs. P-ORAM

As shown in Table 1, the bandwidth consumption of S-ORAM is
12 to 23 times less than that of B-ORAM under practical settings,
while the server-side storage overhead of S-ORAM is about 75%
of that of B-ORAM. The improvement in bandwidth efficiency is
attributed to two factors: (i) the query overhead of S-ORAM is
only 2 logN blocks while the overhead of B-ORAM is 2 log2 N

log logN
;

and (ii) the shuffling algorithm of S-ORAM is more efficient than
that of B-ORAM. In addition, the failure probability S-ORAM is
O(N− logN), which is asymptotically lower than that of B-ORAM
which is O(N− log logN) [13].

5.3.2 S-ORAM vs. P-ORAM
To fairly compare the performance of S-ORAM and P-ORAM,

their user-side storage sizes are both set to around log2 N blocks
and their failure probabilities are set to the same level, which are
both O(N− logN). For this purpose, the security parameter ω(1)
of P-ORAM has to be set to log2 N

log(Z/logN)
, and the user-side storage

size of P-ORAM is set to log3 N
log(Z/logN)

· Z bits; the user-side stor-
age size of S-ORAM is expanded to log2 N · Z bits. Note that,

log3 N
log(Z/logN)

· Z ≥ log2 N · Z as long as Z ≤ N (which is usually
true in practice).

Table 2 shows the theoretical performances of both S-ORAM
and P-ORAM and Table 3 is the practical performance comparison
of these two ORAMs.

In Table 3, it can be seen that S-ORAM outperforms P-ORAM
in both bandwidth efficiency and server-side storage efficiency. It
requires 80% less server-side storage and consumes around 60% to
72% less bandwidth than P-ORAM.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a segmentation-based Oblivious RAM

(S-ORAM). S-ORAM adopts two segment-based techniques, i.e.,
piece-wise shuffling and segment-based query, to improve the per-
formance of shuffling and query by factoring block size into design.
Extensive security analysis proves that S-ORAM is a highly se-
cure solution with a negligible failure probability of O(N− logN).
In terms of communication and storage overheads, S-ORAM out-
performs the Balanced ORAM (B-ORAM) and the Path ORAM
(P-ORAM), which are two state-of-the-art hash and index based
ORAMs respectively, in both practical and theoretical evaluations.

In the future, we plan to study the de-amortization of S-ORAM,
and completely implement the S-ORAM design.

Acknowledgments
This work is supported partly by the ONR under grant N00014-09-
1-0748 and by the NSF under grant EECS-1128312.

7. REFERENCES
[1] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n logn)

sorting network. In Proc. STOC, 1983.
[2] Amazon. http://aws.amazon.com/s3/. In Amazon S3, 2006.

155

N = 220 N = 236

S-ORAM P-ORAM S-ORAM P-ORAM
Pb(Z = 32 KB) 0.394 log2 N · Z 1.170 log2 N · Z 0.456 log2 N · Z 1.247 log2 N · Z
Pb(Z = 64 KB) 0.334 log2 N · Z 1.090 log2 N · Z 0.456 log2 N · Z 1.157 log2 N · Z
Pb(Z = 128 KB) 0.334 log2 N · Z 1.021 log2 N · Z 0.392 log2 N · Z 1.079 log2 N · Z
Pb(Z = 256 KB) 0.259 log2 N · Z 0.959 log2 N · Z 0.392 log2 N · Z 1.011 log2 N · Z

Pc log2 N · Z log3 N
log(Z/ logN)

· Z log2 N · Z log3 N
log(Z/ logN)

· Z
Ps < 6N · Z 32N · Z < 6N · Z 32N · Z

Table 3: Practical Performances: S-ORAM vs. P-ORAM

[3] K. E.Batcher. Sorting networks and their applications. In
Proc. AFIPS, 1968.

[4] A. O. Freier, P. Karlton, and P. C. Kocher. The secure sockets
layer (SSL) protocol version 3.0. In RFC 6101, 2011.

[5] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs. Optimizing ORAM and using it efficiently for
secure computation. In Proc. PETS, 2013.

[6] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAM. Journal of the ACM, 43(3),
May 1996.

[7] M. T. Goodrich. Randomized shellsort: a simple oblivious
sorting algorithm. In Proc. SODA, 2010.

[8] M. T. Goodrich and M. Mitzenmacher. Mapreduce parallel
cuckoo hashing and oblivious RAM simulations. In Proc.
CoRR, 2010.

[9] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious RAM simulation. In
Proc. ICALP, 2011.

[10] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Oblivious RAM simulation with efficient
worst-case access overhead. In Proc. CCSW, 2011.

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via
stateless oblivious RAM simulation. In Proc. SODA, 2012.

[12] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: ramification, attack and
mitigation. In Proc. NDSS, 2012.

[13] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security
of hash-based oblivious RAM and a new balancing scheme.
In Proc. SODA, 2012.

[14] D.-L. Lee and K. E. Batcher. A multiway merge sorting
network. IEEE Transactions on Parallel and Distributed
Systems, 6(2), February 1995.

[15] B. Pinkas and T. Reinman. Oblivious RAM revisited. In
Proc. CRYPTO, 2010.

[16] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((logN)3) worst-case cost. In Proc.
ASIACRYPT, 2011.

[17] E. Stefanov and E. Shi. ObliviStore: high performance
oblivious cloud storage. In Proc. S&P, 2013.

[18] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious
RAM. In Proc. NDSS, 2011.

[19] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In Proc. CCS, 2013.

[20] P. Williams and R. Sion. Building castles out of mud:
practical access pattern privacy and correctness on untrusted
storage. In Proc. CCS, 2008.

[21] P. Williams, R. Sion, and A. Tomescu. PrivateFS: a parallel
oblivious file system. In Proc. CCS, 2012.

[22] P. Williams, R. Sion, and A. Tomescu. Single round access
privacy on outsourced storage. In Proc. CCS, 2012.

156

Appendix
We present the details of the proposed m-way oblivious sorting al-
gorithm in this Appendix.

As shown in Algorithm 3, to sort a setD of n blocks, the m-way
oblivious sorting algorithm works recursively as follows: if n ≤
2m2, a segment-sorting algorithm similar to the segment-shuffling
algorithm is applied to sort the n blocks at the communication cost
of O(n) blocks; otherwise, the n blocks are split into m subsets
each of n

m
blocks, the m-way oblivious sorting algorithm is applied

to sort each of the subsets, and finally a merging algorithm is used
to merge the sorted subsets into a sorted set of n blocks.

Next, we describe the segment-sorting algorithm (Algorithm 4)
and the merging algorithm (Algorithm 5) The segment-sorting al-
gorithm is based on the segment-shuffling algorithm (Algorithm 2)
with the following revisions: (1) The segment-sorting algorithm
sorts blocks that are labeled with tags. The format of a labeled
block is slightly different from the one shown in Figure 1; partic-
ularly, the encrypted tag is inserted as an extra piece before the
encrypted block ID. (2) While the segment-shuffling algorithm can
randomly pick a permutation function to shuffle pieces and blocks,
the segment-sorting algorithm must permute pieces and blocks ac-
cording to the non-decreasing order of tags. (3) The segment-
sorting algorithm does not need to re-construct index blocks.

Finally, Algorithm 5 formally presents the merging algorithm.

Algorithm 3 m-way Oblivious Sorting (D: a set of data blocks)

1: if (|D| ≤ 2m2) then
2: Apply Algorithm 4 to sort D
3: else
4: SplitD into m equal-size subsets of blocksD0, · · · ,Dm−1

5: for each i (0 ≤ i ≤ m− 1) do
6: Apply Algorithm 3 to sort Di

7: end for
8: Apply Algorithm 5 to merge D0, · · · ,Dm−1

9: end if

Algorithm 4 Segment-Sorting of Blocks (Di1 , · · · , Din).
1-5: the same as in Algorithm 2
6: Construct a permutation function that sorts B2 in the non-
decreasing order
7: the same as in Algorithm 2
8: blank
9-14: the same as in Algorithm 2
15: for each v ∈ {2, · · · , P} do
16-26: the same as in Algorithm 2

Algorithm 5 Merging Sorted-subsets of Blocks (D0, · · · ,Dm−1)
/* Regroup blocks */

1: s = |D0|
2: for each i (0 ≤ i ≤ m− 1) do
3: for each j (0 ≤ j ≤ m− 1) do
4: Add Di[j],Di[m+ j] · · · ,Di[s−m+ j] to D′

j

5: end for
6: end for

/* Recursively merge regrouped blocks */
7: for each j (0 ≤ j ≤ m− 1) do
8: if |D′

j | ≤ 2m2 then
9: Apply Algorithm 4 to sort D′

j

10: else
11: Apply Algorithm 5 to merge sort D′

j

12: end if
13: end for

/* Merge sorted blocks */
14: for each i (0 ≤ i ≤ s

m
− 2) do

15: for each j (0 ≤ j ≤ m− 1) do
16: Add D′

j [im],D′
j [im + 1], · · · ,D′

j [im + 2m − 1] to
D′′

i

17: end for
18: end for
19: for each i (0 ≤ i ≤ s

m
− 1) do

20: Apply Algorithm 4 to sort D′′
i

21: end for

157

