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Abstract: With the emergence of cloud computing, more and more sensitive user data are 
outsourced to remote storage servers. The privacy of users’ access pattern to the data should be 
protected to prevent un-trusted storage servers from inferring users’ private information or 
launching stealthy attacks. Meanwhile, the privacy protection schemes should be efficient as cloud 
users often use thin client devices to access the data. In this paper, we propose a lightweight scheme 
to protect the privacy of data access pattern. Comparing with existing state-of-the-art solutions, our 
scheme incurs less communication and computational overhead, requires significantly less storage 
space at the user side, while consuming similar storage space at the server. Rigorous proofs and 
extensive evaluations have been conducted to show that the proposed scheme can hide the data 
access pattern effectively in the long run after a reasonable number of accesses have been made.     
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1. Introduction 

With the emergence of cloud computing, data 
outsourcing is becoming more and more prevalent. Cloud 
storage [1, 2] (such as Amazon Simple Storage Service 
and Rackspace Cloud Files) enables enterprise and 
individual users to enjoy flexible, on-demand and high-
quality services, without the need to invest on expensive 
infrastructure, platform or maintenance. Although 
envisioned as a promising service platform for the next-
generation of Internet, cloud computing is facing great 
privacy and security challenges that may impede its fast 
growth and increased adoption if not well addressed. For 
example, one of the security concerns for the user is that 
the service provider itself may breach the users secrecy 
and privacy. For example, Google has been criticized for 
tapping into its users data. Rising to the challenges, 
researchers have proposed many schemes [3-5] to protect 
the confidentiality and integrity of users’ outsourced data. 
Unfortunately, limited research has been conducted on the 

protection of users’ privacy during their access to the 
storage server, such as the access frequency to each data 
item and the linkage between accesses of data items. 
Leakage of such access pattern information may enable 
potential privacy attacks such as focused attacks against 
selected data items. Servers may also infer a user’s activity 
pattern or private interest by tracking the user’s access to a 
particular data item.  

To strictly protect the privacy of data access pattern, the 
intention of every data access operation should be hidden so 
that observers of the operations cannot gain any meaningful 
information. Conforming to this strict requirement of access 
pattern privacy, Chor et al. [6], Ostrovsky et al. [7] and Itkis 
[8] introduced the notions of the private information 
retrieval (PIR) in an information theoretical setting and the 
computational PIR by restricting the database to perform 
only polynomial-time computations. Fully implementing the 
PIR notion is, however, expensive. As shown by Sion et al. 
[9], deployment of any single-server PIR protocol is not 
necessarily more efficient than a simple transfer of the entire 
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database. Another approach to the strict preservation of data 
access pattern privacy is based on the notion of oblivious 
RAM (ORAM) [10-19]. In a latest ORAM implementation 
[16], about log n data items of the database should be 
scrambled every time after a single data item has been 
requested, where n is the total number of data items in the 
database. Let τ denote the size of a data item in bits. This 
ORAM scheme requires at least O( n t× )user storage and 
incurs a communication and computational complexity of 
O(log n × τ). The cost of this scheme is still rather expensive 
especially when the number of data items is large and the 
data are accessed frequently. 

Although strict protection of data access pattern privacy 
is attractive, less strict protection, such as protecting the 
privacy of long-term access pattern, is also very useful in 
practice. For example, a malicious server may use the 
statistical data access pattern of a user to infer the user’s 
private information or conduct stealthy attacks. Moreover, 
being lightweight is also highly desired by users, as many of 
them often access the cloud with thin client devices such as 
smartphones. Based on these considerations, we propose a 
lightweight scheme to preserve the privacy of long-term 
data access pattern in this paper. The outline of the proposed 
scheme is as follows. Every time when a data item is needed 
by a user, (i) the user retrieves the desired data item together 
with additional dummy data items to hide the actual retrieval 
target; and (ii) the retrieved data items are re-encrypted and 
re-positioned before being stored back to the server to 
perturb the connections between data items and their storage 
locations at the server. The scheme records the storage 
locations of data items in index files, which are stored in a 
pyramid-like hierarchical structure at the storage server to 
reduce communication, computational and storage 
overheads. Similar to data items, the access pattern to index 
files is also protected with additional dummies and re-
positioning of the files after access. A set of delicately 
designed rules are used in the selection of dummy data items 
and index files as well as the repositioning of the files, 
which ensures that the connections between data items and 
their storage locations are reshuffled gradually, become 
more and more difficult to trace as the number of accesses 
increases, and eventually become fully untraceable. 
Rigorous proofs and extensive evaluations have been 
conducted to demonstrate that the proposed scheme can hide 
the data access pattern in the long run, and the number of 
accesses required to preserve the access pattern privacy is 
reasonable in many situations. 

The rest of the paper is organized as follows. Section 2 
describes the system models. The proposed scheme is 
elaborated in Section 3. Section 4 and Section 5 analyze its 
security performances and convergence rate respectively. 
Section 6 reports the evaluation results and Section 7 
presents the overhead analysis. Section 8 discusses the 
related work. Finally, Section 9 concludes the paper. 

2. Models and Assumptions 

2.1 System Model 
We consider a basic remote storage system with a 

storage server and a single user. The user stores its sensitive 
data on the remote server, which in turn provides an online 
interface for the user to access the outsourced data. Later on, 
when the need for a data item arises, the user requests it 
from the server, updates the data item after usage, and then 
uploads the updated data item back to the server. Similar to 
[10-19], we assume that all the data items stored at the 
server have the same size so the server cannot identify a data 
item from its size. In practice, this can be achieved 
conveniently by appending padding bits to short data items 
or dividing large data items into smaller ones. 

2.2 Security Model 
We assume that the storage server is curious about the 

user’s private information and may launch malicious 
attacks. Specifically, it may be interested in obtaining the 
user’s data access pattern over the long term, which 
primarily includes the following information: which data 
items that have been requested by the user and the number 
of times that a particular data item has been requested by 
the user. 

If the access pattern information is obtained, the server 
may be able to launch various attacks. For example, the 
server may attempt to infer the user’s activity pattern or 
private interest via tracking the user’s access to some 
particular data items. The server may also launch focused 
attacks towards user’s data that are accessed with very 
high frequency, or stealthily delete data that are never 
accessed to save its storage and maintenance costs without 
being noticed by the user. 

As for the user, we assume that it has a primitive 
encryption function that generates different cipher-texts 
over different input, and the server does not have non- 
negligible advantage at determining whether a pair of 
encrypted items of the same length represent the same data 
item. We assume that data confidentiality and integrity are 
protected using existing techniques and the communication 
channel between the user and the server is secured using 
mechanisms such as SSL/IPSec. We do not consider denial 
of service attacks or timing attacks as they can be 
addressed independently from this work. 

2.3 Design Goal 
Our main design goal is to develop a lightweight 

solution to prevent the server from knowing the user’s 
long-term access pattern to the data stored at the server, 
while allowing the user to access the outsourced data with 
low communication and computational overhead. 
Specifically, we preserve the access pattern privacy by 
breaking the connections between the data items and their 
storage locations gradually. 

3. The Proposed Scheme 

3.1 System Setup 
Before describing our proposed scheme in detail, we 

first explain the system setup. 
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3.1.1 Hierarchical Storage Structure at the 
Server 

We study a system where a user stores n distinct data 
items (denoted by di, i = 1, ··· , n) at a storage server. All 
data items are encrypted with the user’s secret key before 
uploading. In addition to data items, the server stores a 
hierarchy of index files with the following features: 
• As shown in Fig. 1, there is a total of T = ⌈logmn⌉	 ≥ 1 

levels of index files, where m> 1 is a design parameter. 
In Section 7, we analyze the relation between m and 
the communication, computational and storage 
overheads incurred by our solution. To simplify the 
presentation, we assume that logmn is an integer in the 
rest of the paper. 

•  At level t (t = 1, ···, T), there are t

n
m

 index 

files(denoted by t
jI , j = 1, ···, t

n
m

). So the total 

number of index files in the hierarchy is 

1

1 .
1

T

tt

n n
mm=

-
=

-å   

•  Each index file records the storage locations of m 
index files at its next lower level. Specifically, t

jI  at 
level t contains the storage location information of the 
following index files at level (t − 1): 1

( 1) 1 ,t
j mI -
- +  

1
( 1) 2 ,t

j mI -
- +  ···, 1 ,t

jmI -  as illustrated in the callout box in 
Fig. 1. 

• There is only a single index file at the top level (i.e., 
level T): 1 .TI   
• Data items form the bottom level (i.e., level 0) of the 

hierarchy. 
• Files at different levels of the hierarchy are stored at 

non-overlapping storage spaces. 
 
Note that, as shown in Fig. 1, there is no fixed order- 

correspondence between an index file (or a data item) and 
its storage location. This is due to the design nature of our 
proposed scheme, whose key idea is to randomize the 
storage locations of index files and data items after each 
access. Details will be discussed in Section 3.2. 

3.1.2 Iterative Query Process by the User 
With such a pyramid-like hierarchical storage structure, 

we have the following observation about the relation 
between a data item and its index files: the storage location 
of the data item ds is recorded in the level-1 index file 

1
( ,1) ,f sI  whose storage location information is in turn 

recorded in the level-2 index file 2
( , 2) ,f sI  so on and so forth, 

till the top-level index file 1 ;TI   here, f(s,t) is defined as f(s,t) 

= .t

s
m

é ù
ê úë û

 This relation is illustrated in Fig. 1 as a linked 

chain of gray boxes from top level T to bottom level 0.  
Based on the above observation, we know that the user 

can obtain the desired data item ds by performing a 
sequence of queries to obtain these T index files in the 
chain: 1 1

1 ( , 1) ( ,1), , ,T T
f s T f sI I I-

- L  in a top-down manner 

 

Fig. 1. System setup. Data items and index files form a pyramid-like hierarchical storage structure at the server. 
Each index file records the storage locations of m index files at its next lower level. For example, the content of 

( , )
t
f s tI  is shownin the callout box, and the m level-(t − 1) index files associated with ( , )

t
f s tI  are shown as bold boxes in 

the figure. Here, ( , ) t

sf s t
m

é ù= ê úë û
. To obtain data item ds, the user performs a sequence of queries iteratively in a top-

down manner, to obtain T index files (marked as gray boxes), one at each level of the hierarchy.  
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through the hierarchy; once 1
( ,1)f sI  is obtained, the user 

gets to know the storage location of ds and can then issue 
the final query to obtain the data item. After the access, the 
data items and index files are updated, re-encrypted and 
uploaded back to the server.  

To simplify the presentation, we assume that the user 
requests the data items in rounds and the user requests a 
single data item in each round. In the following, we 
explain our proposed scheme in detail. Table 1 lists the 
notations to be used in the rest of the paper. 

 
Table 1. Notations Used in the Paper 

Notation Description 
n the total number of data items 
D  the set of all data item IDs 

m the number of storage locations recorded in an 
index file 

t
jI   the j-th index file at level t of the hierarchy 

x (j,t) the set of IDs of files whose storage locations are 
recorded in the level-t index file of ID j 

   the set of storage locations of level-t files 

f(i,t) the ID of the index file that corresponds to data 
item di at level t 

t
preQ  (t	≥1	) the set of IDs and locations of level-t index files 

accessed in the previous round 

t
curQ  (t	≥1	) the set of IDs and locations of level-t index files 

accessed in the current round 
0
preQ  the set of IDs and locations of data items accessed 

in the previous round 
0
curQ  the set of IDs and locations of data items accessed 

in the current round 
 

3.2 Scheme Description 

3.2.1 Scheme Overview 
Our proposed scheme is executed every time when the 

user needs to request a data item. The key ideas of the 
scheme include: (i) extra dummy data items and index files 
(called dummies for short) are requested to hide the actual 
files of the user’s interest; (ii) multiple dummies are 
selected so that the user’s request at each round has the 
same format, which is a necessity to hide the access pattern 
[10] and (iii) the retrieved files are re-encrypted and re-
positioned before being stored back to the server so as to 
break the connections between files and their storage 
locations at the server. Generally, these rules ensure that 
the connections between files and their storage locations 
are reshuffled gradually, become more and more difficult 
to trace as the number of accesses increases, and 
eventually become fully untraceable. Detailed explanations 
and analysis will be presented in the following sections. 

Assumption: The following assumption is made on the 
initial condition when our scheme starts: for any t = 1, ··· , 
T − 1, the mappings between level-t and level-(t − 1) files 
are unknown to the server. In other words, for any 
particular data item, the server has no knowledge about the 

corresponding index files; similarly, for any particular 
index file, the server has no knowledge about the 
corresponding index files at the upper layers. 

Data Structures Recording Access History: Our 
scheme makes use of past file access history when 
selecting dummies. To facilitate such mechanism, the 
historical information about the previous round of file 
access at layer t is recorded in a data structure denoted as 

t
preQ , which consists of six fields: DR, DS and DN recording 

the file IDs, and LR, LS and LN recording their storage 
locations, respectively. The data structures are stored in 
cipher-text in a designated storage space at the server, and 
we denote the storage location of t

preQ  as Hist[t].  
Structure of the Algorithm: The pseudo-code of our 

scheme is presented in Fig. 2. The scheme starts by 
selecting dummy data items. Then, it works iteratively to 
select, download, process and upload the index files, from 
the top level to the bottom level of the index hierarchy. In 

 

Fig. 2. Pseudo-code of the proposed scheme. 
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each iteration, it performs similar operations including 
Selection & Downloading, Random Reshuffling, and Re- 
encryption & Uploading of index files. Finally, the desired 
data item and the selected dummy data items are 
downloaded, randomly reshuffled, re-encrypted and 
uploaded. Detailed explanations of the operations are 
presented next, with a simple example given in Fig. 3. 

3.2.2 Selection of Dummy Data Items 

When the user intents to retrieve a data item (denote its 
ID by 0

curQ .DR), it also requests the following dummy data 
items to conceal its intention: 
• the first dummy (whose ID is denoted as 0

curQ .DS): the 
dummy that may swap its storage location with 

0
curQ .DR after access with a probability of 1/2;   

• the second dummy (whose ID is denoted as 0
curQ .DN): 

the dummy that will not swap its storage location with 
others. 

 
0
curQ .DS and 0

curQ .DN are selected to make sure that the 
user’s request at each round has the same format: the user 
always requests three data locations, out of which two and 
only two of them are from the ones accessed in the 
previous round. Note that requiring user’s request at each 
round to have the same format is necessary to hide the true 
access pattern [10]. Specifically, it hides the information 
about whether user’s requests at two rounds are intended 
for the same data item. Also note that the second dummy is 
needed in order to guarantee that each access can keep the 

 

Fig. 3. An example of the access procedure of a user. There is a total of n = 16 data items and T = 2 levels of index 
files stored at the server. We use id '  to represent that data item di appears differently after re-encryption. In this 
example, data items d1, d9, d10 were accessed in the previous round. It shows how the user operates when it is 
interested in obtaining data item d3 in the current round. 
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same format (please refer to [21] for detailed explanations). 
To maintain the same format in each access, the data 
structure 0

preQ  is downloaded from the server, which 
records the information about the data items (namely, the 
data IDs and their corresponding locations) accessed in the 
previous round. Then, the dummies for the current round 
are selected according to the following rules: 
• For the first dummy (i.e., 0

curQ .DS): (i) If the intended 
data item is the same as the intended data item or the 
first dummy in the previous round, then the first 
dummy will be selected uniformly at random from the 
set of all data items excluding the intended data item 
of the current round. (ii) Otherwise, the first dummy 
will be randomly selected from the intended data item 
or the first dummy in the previous round with equal 
probability. (Refer to lines 3 to 7 in Step 1 as shown 
in Fig. 2.) 
•  For the second dummy (i.e., 0

curQ .DN), its selection 
depends on the selection results of the first dummy: (i) 
If both the intended data item and the first dummy 
have appeared in the previous round, the second 
dummy will be selected uniformly at random from the 
set of all data storage locations excluding the 
locations accessed in the previous round. (ii) 
Otherwise, the second dummy will be selected 
uniformly at random from the locations accessed in 
the previous round excluding locations of the already-
selected files. (Refer to lines 12 to 20 in Step 2 as 
shown in Fig. 2 when t = 0.) 

 
In the example given in Fig. 3, in the previous round, 

data #10 was intended by the user and data #1 was selected 
as the first dummy. Since data #3 is needed in the current 
round (i.e., case (ii) in the first dummy selection rules), the 
user randomly selects the first dummy, which is data #1 in 
this example, from data #10 and data #1 (as shown by step 
3). As the selected data items did not both appear in the 
previous round (i.e., case (ii) in the second dummy 
selection rules), the second dummy’s location, which is 7 
(as shown by step 15), is selected from data #10 and data 
#9’s locations (i.e., data locations #7 and #11). 

3.2.3 Selection, Downloading, Processing 
and Uploading of Index Files 

First, the single top-level index file is downloaded and 
decrypted, and its ID is recorded in T

curQ .DR, T
curQ .DS, and 

T
curQ .DN, i.e., T

curQ .DR = T
curQ .DS = T

curQ .DN = 1 (as shown 
by step 4 in the example of Fig. 3). Then, three index files 
for each level t, where (T − 1) ≥ t ≥ 1, are selected, 
downloaded, processed and uploaded, in an iterative and 
top-down manner. Without loss of generality, the 
following describes the operations for iteration t. 

 
3.2.3.1 Selection & Downloading of Level-t Index 

Files: The files that contain the level-t indices of the 
intended data item ( 0

curQ .DR) and the first dummy 
( 0

curQ .DS) are first selected to access. The IDs of these files 
are denoted as t

curQ .DR and t
curQ .DS respectively. Note that, 

these file IDs can be found out by using the afore-defined 
f(·,·) function, i.e., t

curQ .DR = f( 0
curQ .DR, t) and t

curQ .DS = 
f( 0

curQ .DS, t). Then, similar to the selection of dummy data 
items, additional dummy index files are selected to make 
sure that, in each round, three level-t index files are 
accessed and exactly two of them appeared in the previous 
round. The following rules are applied in the selection: 
• For the first dummy index file (i.e., t

curQ .DS): If the 
intended data item and the first dummy share the same 
level-t index file, the first dummy index file is re-
selected uniformly at random from the index files 
whose storage locations are stored in files 1t

curQ + .DRor 
1t

curQ + .DS, i.e., the level-(t + 1) intended index file and 
the first dummy index file downloaded in the previous 
iteration of this algorithm. (Refer to lines 8 to 10 in 
Step 2 as shown in Fig. 2.) 
• For the second dummy index file (i.e., t

curQ .DN): (i) If 
the intended index file and the first dummy index file 
have both appeared in the previous round, the second 
dummy index file will be selected uniformly at 
random from all level-t index file locations excluding 
the locations that appeared in the previous round. (ii) 
Otherwise, the second dummy index file will be 
selected uniformly at random from the locations that 
appeared in the previous round excluding locations of 
the already-selected files. (Refer to lines 12 to 20 in 
Step 2 as shown in Fig. 2 when 0.t ¹ ) 

 
After the level-t index files have been selected, the 

locations of files t
curQ .DR and t

curQ .DS can be found by 
searching their indices in the downloaded level-(t + 1) 
index files, i.e., files 1t

curQ + .DR and 1t
curQ + .DS. Then the 

locations of the three level-t index files are provided to the 
server and the files can be downloaded. Note that, the 
locations are presented to the server in an arbitrary order, 
so that the server cannot distinguish between desired index 
files and dummies. The downloaded files are then 
decrypted with the user’s key. 

In the example given in Fig. 3, since the intended data 
item and the first dummy share the same level-1 index file 

1
1I , the user randomly selects a new first dummy index file, 

which is 1
3I  in this example, from level-1 index files { 1

2I , 
1
3I , 1

4I } (as shown by steps 6 and 7). Then the user looks 
up 2

1I  to find out the storage locations 1
curQ .LR and 1

curQ .LS 
(as shown by step 8). Since both 1

1I  and 1
3I  were accessed 

in the previous round, the user selects the second dummy 
index file with location #4 (as shown by step 9). Hence, 
the user retrieves the files from level-1 storage locations #2, 
#3 and #4. 

 
3.2.3.2 Random Reshuffling of Selected Level-t Index 

Files: The intended index file ( t
curQ .DR) and the first 

dummy index file ( t
curQ .DS) may swap their storage 

locations with a probability of 1/2. If the swap happens, 
the index information of these files should be updated in 
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their index files 1t
curQ + .DR and 1t

curQ + .DS, respectively. In the 
example given in Fig. 3, since files 1

curQ .DR and 1
curQ .DS 

are swapped, the user updates 2
1I  accordingly (as shown 

by steps 11 and 12). 
 
3.2.3.3 Re-encryption & Uploading of Index Files: 

Now, we have completed the processing of level-(t + 1) 
index files 1t

curQ + .DR, 1t
curQ + .DS, and 1t

curQ + .DN. To hide content 
and/or location changes made to them, these files should 
be re-encrypted before being uploaded back to the server. 
In our scheme, re-encryption is performed by applying the 
Cipher Block Chaining (CBC) encryption techniques [20] 
on the file content, where the first block of the file is a 
non-reappearing nonce. The user’s key is used inthe re-
encryption. This way, the same secret key can be reused 
for encrypting all files, which simplifies the key 
management at the user. Such re-encryption process 
ensures that a computationally bounded adversary does not 
have non-negligible advantage at determining whether a 
pair of encrypted data items (before and after re-encryption, 
respectively) carry the same data content. 

After re-encryption, files 1t
curQ + .DR, 1t

curQ + .DS, and 
1t

curQ + .DN are uploaded to their locations, respectively, but 
in an arbitrary order to make it difficult for the server to 
track these files. At the end of iteration t, data structure 

t
preQ  should be replaced by ,t

curQ  then re-encrypted and 
uploaded to location Hist[t]. This way, next time when 

t
preQ  is downloaded, it will reflect the mostly recent 

history. 
In the example in Fig. 3, 2

1I  and 1
curQ  are re-encrypted 

and uploaded to the server at the storage locations #0 and 
Hist[1], respectively (as shown by step 13). 

3.2.4 Downloading, Processing and 
Uploading of Data Items 

After the above steps, the level-1 index files have been 
downloaded and decrypted. Based on the index 
information in these files, the desired data item and two 
additional dummy data items can be downloaded from the 
server and decrypted with the user’s key. Upon the user’s 
access to the desired data item has been completed, the 
intended data item and the first dummy may swap their 
storage locations with a probability of 1/2, and if the swap 
happens, changes will be made to the level-1 index files 

1
curQ .DR and/or 1

curQ .DS, respectively. Finally, the three 
level-1 index files and the three data items are re-encrypted 
and uploaded to the server. Also, data structure 0

preQ  is 

updated to 0
curQ , re-encrypted and uploaded to the server. 

The re-encryption and uploading operations are performed 
in the similar manner as described above. 

In the example given in Fig. 3, the user looks up 1
1I  to 

find the storage locations 0
curQ .LR = 5 and 0

curQ .LS = 4. As 
afore-explained, the user selects the second dummy’s 
storage location 0

curQ .LR = 7 (as shown by steps 14 and 15). 

Since data items 0
curQ .DR and 0

curQ .DS are swapped, the 
content of 1

1I  is updated (as shown by steps 17 and 18). 
Finally, the re-encrypted level-1 index files, 0

curQ  and data 
items are uploaded to the server respectively. 

Remark: Note that there is not need to include the 
second dummy data items/index files in the reshuffling 
process. This is because the server does not know which 
two data items/index files are involved in the reshuffling, 
because all three files are re-encrypted before uploading. 

4. Security Analysis 

In this section, we show that the proposed scheme can 
preserve the privacy of user’s access pattern in the long 
run. That is, after a sufficiently large number of accesses, 
the frequency with which each data item has been accessed 
cannot be figured out by the server. Then we discuss the 
practical implications of this security property through 
analyzing how our scheme can deal with some typical 
attacks that are based on the knowledge of access pattern. 

4.1 Access Pattern of Index Files 
We first show that the access pattern of index file 

locations, which can be observed by the server, does not 
reveal extra information about the data access pattern. In 
the proposed scheme, index files are used to facilitate user 
query and data access. The content of an index file is 
protected by being re-encrypted after each access, based on 
the user’s secret key and a random non-repeating nonce. 
Hence, it is impossible for the server to gain information 
about the data access pattern from the content of index 
files. The following theorem states that observing the 
access pattern of index file storage locations does not 
reveal more information about data access pattern than 
observing only the access pattern of data storage locations. 

Theorem 4.1: The storage server cannot gain any ad- 
vantage in inferring user’s data access pattern through 
observing the access pattern of index file storage locations. 

Proof: Due to space limitation, the proof of Theorem 
4.1 is omitted in this paper. Please refer to our full 
technical report [21] for details.                        □ 

4.2 Access Pattern of Data Items 
As the observed access pattern of index file locations 

does not help in inferring data access pattern, we next 
study what can be inferred from observing only the access 
pattern of data storage locations. The following theorem 
formally states the property that, if the server can only 
observe the access pattern of data storage locations, the 
data access pattern, namely, the data item requested by the 
user and the frequency with which each data item has been 
accessed by the user, can be preserved in the long run. 

Theorem 4.2: If a user has accessed the data items, 
despite the user access sequence, for a sufficiently large 
number of times, each storage location at the server is 
accessed uniformly at random. 

Proof: The proof of Theorem 4.2 has been reported in 
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the preliminary version of this paper [34], thus is omitted 
in this paper. Please refer to [34] for details.                      □ 

4.3 Discussion 
To further understand the practical implications of the 

above security properties, In the following, we discuss a 
few typical attacks that are based on the knowledge of data 
access pattern, and analyze how our scheme can deal with 
the attacks. 

4.3.1 Security against Tracking Data Items 
Suppose the server has identified a particular user data 

item via other means, e.g., physical spying. It may want to 
keep track of this data item thereafter. Using our proposed 
scheme, due to the property described in Theorem 4.2, 
after a sufficiently large number of accesses, the server 
does not have non-negligible advantage at determining 
which location the target data item is at. For example, after 
the first round that the target item has been accessed, from 
the server’s perspective, the target item may be stored at 
any of the three accessed locations with an equal 
probability of 1/3. Then if any of these three locations is 
accessed in the next round, the probability will be divided 
further among the newly accessed locations. Therefore, by 
solely observing the storage locations accessed by the user, 
the server could lose track of the target data item quickly. 

4.3.2 Security against Focused Attacks on 
Selected Data Items 

Some of the user’s data items may be requested with 
very high frequency. These files are often important to the 
user. If a malicious server knows which data items are 
frequently accessed, it may launch intensive attacks on the 
data, attempting to find out the content or contextual 
information of the data. Note that, such attacks are 
sometimes feasible in practice, for example, when the 
adopted data encryption algorithm or the key chosen by the 
user is not sophisticated enough, or some side information 
about the data can be obtained in other means. Using our 
proposed scheme, due to the property described in 
Theorem 4.2, all data storage locations will be equally 
accessed in the long run. Hence, the server cannot identify 
which data items are frequently requested by the user. 
Similarly, some of the user’s data items may be requested 
with very low frequency, e.g., backup data. A malicious 
server may want to stealthily delete these rarely-accessed 
user data items to save storage and maintenance cost for 
itself without being noticed by the user. Such attack can 
also be stopped as our proposed scheme prevents the 
server from identifying rarely requested data items. 

5. Analysis of Convergence Rate 

As shown in the previous section, using the proposed 
scheme, every data item is uniformly randomly distributed 
to all storage locations after a sufficiently large number of 
accesses. In this section, we analyze the convergence rate 

of the proposed scheme. Specifically, we are interested in 
finding how many accesses are needed before every data 
item become uniformly randomly distributed to all storage 
locations. Apparently, different true access patterns may 
result in different convergence rates. In this paper, we will 
present the analysis of the convergence rate under one 
particular access pattern, in which the user always requests 
the same data item as its true target. The convergence 
rates for more complicate access patterns are much more 
difficult to analyze and we will investigate them in our 
future work. Nevertheless, the analysis of convergence rate 
we present in this paper will provide some insights about 
how fast the proposed scheme converges. 

In the following analysis, we model the user’s access 
process as a Markovian process, denoted as MC-1. 
Specifically, each state in MC-1 is a permutation of (d1, ··· , 
dn), which stands for one distribution of the n data items to 
n storage locations. For simplicity, we assume that data 
item d1 is the target data item in each access, i.e., DR = d1. 
Note that because the location of DN does not change in 
each access, the selection of DN does not affect the 
distribution of data items’ storage locations. Hence, we 
only consider the behavior of DR and DS in the following 
analysis. Given the assumption that DR = d1 in each access, 
then DSis selected uniformly at random from all the data 
items, excluding d1 (see Section 3.2). In other words, DS 
may be any data item from {d2, ···, dn} with equal 
probability, which is 1/(n − 1). 

5.1 Preliminaries 
In literature, many methods have been proposed to 

study the convergence rate of a Markovian process [31-33]. 
Our analysis of the convergence rate is based on the 
relation between the convergence rate and the second 
largest eigenvalue of the transition matrix. Specifically, 
our analysis of MC-1’s convergence rate is based on the 
following fact. 

Theorem 5.1: Given a Markovian process with initial 
state vector α0 = {α0,1, α0,2, ···, α0,n}, the state vector after 
m steps αm = {αm,1, αm,2, ···, αm,n} and the steady state 
vector π = {π1, ···, πn}, it has 
 
 , 2( ),m

j E m j jsup Oa p lÎ - =  (1) 
 

where E = {1, ··· , n}, and λ2 < 1 is the second largest 
eigenvalue of the transition matrix. 

Eq. (1) implies that, for a Markovian process, the 
convergence rate from an arbitrary initial state to the 
steady state is upper-bounded by the rate that |λ2|m 
approaches zero, where m is the number of steps. For 
example, suppose the system requires that supjÎE|αm,j − πj| 
≤ ε, where ε> 0. If we let 
 
 2 ,mc l e£  (2) 

 
which is equivalent to 

 
 

2 2 2
log log (log ),m c Ol l le e³ - =  (3) 
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then we will get supjÎE|αm,j − πj| ≤ ε after O(logλ2ε) steps. In 
our following analysis, we will firstly find λ2 for the 
transition matrix of MC-1. Then we find an upper-bound 
for the convergence rate of MC-1 based on the value of λ2. 

5.2 The Transition Matrix of MC-1 
Denote each state of MC-1 as σi (i = 1, ··· , n!), which 

stands for one distribution of the n data items to n storage 
locations. Then according to the scheme, the transition 
function g(σi, σj) from a state σi to another state σj is 
defined as following: 
• g(σi, σj) = 1/2, if σi= σj, which means that each data 

item’s storage location does not change after one 
access. This situation is resulted from DR and DSnot 
swapping their locations at the end of the access. Note 
that DR= d1 and there are n − 1 possible choices of DS 
and the probability of swapping is 1/2, thus g(σi, σj) = 
1 1
2 1n

×
-

·(n − 1) = 1/2. 

• g(σi, σj) = 1 ,
2( 1)n -

 if σi and σj differs only in d1’s 

location and one of the rest of data items location. 
Inthis case, it means that DR and DS swap their 
locations at the end of the access. For example, 
suppose σi= (d1, d2, d3, ··· , dn) and σj= (d2, d1, d3, ··· , 
dn), then σi may transit to σj if d2 is selected as the first 
dummy data item and d1 and d2 swap their locations at 
the end of the access. 
• Otherwise, g(σi, σj) = 0. For example, suppose σi = (d2, 

d3, d1, d4, ··· , dn) and σj = (d3, d2, d1, d4, ··· , dn), then 
f(σi, σj) = 0, because there is no way that d3 and d2 
swap their locations in one access while d1 is the true 
target. 

 

Note that in the proposed scheme, transitions between 
two states are symmetric, i.e., g(σi, σj) = g(σj, σi). 

As an example, let n = 3, thus there are in total 3! = 6 
states in MC-1. Note that in practice, if n = 3, our scheme 
will always retrieve the whole database. However, without 
loss of generality, we use n = 3 to simplify the presentation. 
Fig. 4 shows the transition matrix for this process, from 
which we can get the transition probability between 
different states. For example, Fig. 4 reads that the 
transition probability between states (1 2 3) and (2 1 3) is 

1/4, which is 1 1 .
2 3 1

×
-

 

It is easy to calculate that, when n = 3, the transition 
matrix has the second largest eigenvalue λ2 = 3/4. 
Therefore, according to Eq. (1), the rate at which an 
arbitrary state converges to the steady state is upper-

bounded by the rate at which 3
4

m
æ ö
ç ÷
è ø

 approaches zero as m 

(the number of accesses) increases. As afore-explained in 
Section 5.1, we will get supjÎE|αm,j − πj| ≤ ε, where ε > 0, 

after 3
4

logO e
æ ö
ç ÷
è ø

 steps (i.e., data accesses). For example, if 

we let ε = 1/nc, the process will converge in 3
4

1log cO
n

æ ö
ç ÷
è ø

 = 

3
4

logO c n
æ ö
ç ÷
è ø

 = (log )O n  steps. 

5.3 The 2nd Largest Eigenvalue of MC-1 
Before we present the analysis of the second largest 

eigenvalue of the transition matrix, we describe how we 
organize the transition matrix to simplify the proof. 
Apparently, the order in which different states appear in 
the rows and columns of the transition matrix affects the 
representation of the transition matrix. In the following, we 
describe our way of organizing the transition matrix, by 
explaining how to get the transition matrix for a system of 
n + 1 data items (denoted as Πn+1) based on the transition 
matrix of n data items (denoted as Πn). Specifically, Πn+1 
can be considered as the addition of two matrices, namely, 
matrix Πn+1,A which is derived from Πn, and matrix Πn+1,B. 
Fig. 5 shows a high-level illustration of these two matrices. 
Specifically: 
•  In Πn+1,A(as shown in Fig. 5(a)), the sub-matrices 

corresponding to states from the same groups are the 

same as Πn multiplying 1.n
n
-  The rest of the entries 

in Πn+1,A are all zero. 
• In Πn+1,B(as shown in Fig. 5(b)), the diagonal entries 

are all 1 .
2n

 In addition, for each row/column, there is 

only one non-zero entry besides the diagonal entry, 

which is also 1 .
2n

 

 
We claim that the second largest eigenvalue, λ2, for the 

transition matrix that we described previously is 1 − 
1 ,

2( 1)n -
 where n is the number of data items. The rest of 

this section presents the proof of this claim. We firstly 

prove in Section 5.3.1 that 1 − 1
2( 1)n -

 is one of the 

 

Fig. 4. Example transition probabilities between states 
when n = 3. Each parenthesized sequence of numbers 
represents a distribution of data items to different 
locations. For example, (1 2 3) denotes that data item 
d1, d2, and d3 are stored in locations 1, 2, and 3 
respectively. 
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eigenvalues for the transition matrix with n data items. We 

then show in Section 5.3.2 that 1 − 1
2( 1)n -

 is indeed the 

second largest eigenvalue of the transition matrix. 

5.3.1 Eigenvalues of the Transition Matrix 
Theorem 5.2: For a system with n data items, the afore-

described transition matrix of MC-1 has one of its 

eigenvalues λn as 1 − 1 ,
2( 1)n -

 with one of its 

corresponding eigenvector Vn as the following: 
  

 
{ }

{ }{ }11

0,1,0,1, 1, 1 ,   = 3

, ,   > 3nn

if n

if n--

ì
- -ïï= í

ï
ïî 1 0

n

n

V
V -

 (4) 

 
where {Vn−1}n−1 is the concatenation of n − 1 copies of 
Vn−1, and 0n−1 is an ((n − 1)!)-entry zero vector. 

Proof: We prove the theorem by induction. Let 
Πndenote the transition matrix of interest. Generally, for an 
eigenvalue λn with its eigenvector Vn, we have 

 
 ( ) ,n n nIlÕ - = 0n nV  (5) 

 
where In stands for the (n!) × (n!) identity matrix and 0n is 

an (n!)-entry zero vector. 
It is easy to verify that when n = 3, {0, 1, 0, 1, −1, −1} 

is an eigenvector with eigenvalue 3/4 for the matrix shown 
in Fig. 4. In the following, we will show that Vn = {{Vn−1}n

−1, 0n−1} when n> 3. 
Suppose Vn is an eigenvector in the format of Eq. (4), 

with eigenvalue λn = 1 − 1
2( 1)n -

. As afore-explained, 

 
 1 1, 1, .n n A n B+ + +Õ = Õ + Õ  (6) 

 

Given that λn = 1 − 1
2( 1)n -

 and λn+1 = 1 − 1
2n

, 

therefore, 
 

 

1 1 1

1, 1 1, 1

1, 1 1, 1

( )

1 1

1 1 .

n n n

n A n n n B n

n A n n n B n

I

n I I
n n

n I I
n n

l

l

l

+ + +

+ + + +

+ + + +

Õ -

æ - öæ ö æ ö= Õ - + Õ -ç ÷ç ÷ ç ÷
è ø è øè ø

-æ ö æ ö= Õ - + Õ -ç ÷ ç ÷
è ø è ø

+1

+1

+1 +1

n

n

n n

V

V

V V

 (7) 

 
Based on the relation between Πn+1,A and Πn (as shown 

in Fig. 5(a)), and given that Eq. (5) holds and Vn+1 = 
{{Vn}n, 0n}, it is easy to see that the first item of Eq. (7) is 
equal to 0n+1, i.e., 

 

 1, 1
1( ) .n A n n

n I
n

l+ + +

-
Õ - =1 10n+ nV  (8) 

 
Now we show that the second item of Eq. (7), i.e., 

(Πn+1,B – 1
n

In+1) Vn+1, is also equal to 0n+1. Let Π′n+1,B = 

(Πn+1,B – 1
n

In+1). From Fig. 5(b), we can see that Π′n+1,B 

differs from Πn+1,B only in the diagonal entries: diagonal 

entries in Π′n+1,B are 1
2n

-  whereas diagonal entries in 

Πn+1,B are 1
2n

. Because each row of Π′n+1,B only has two 

non-zero entries, we observe the following facts when 
scalar-multiplying each row of Π′n+1,B with Vn+1: the 
diagonal entry and the other non-zero entry are multiplying 
the same value, either 0, 1 or -1. Specifically, 
• If the diagonal entry is multiplying 0, the other non-

zero entry of this row is also multiplying 0.  
• If the diagonal entry is multiplying 1, the other non-

zero entry of this row is also multiplying 1.  
• If the diagonal entry is multiplying -1, the other non-

zero entry of this row is also multiplying -1.  
 
As a result, the scalar multiplication of each row of 

Π′n+1,B and Vn+1 is 0, which means that 
 

 1, 1
1( ) .n B nI
n+ + + +Õ - =1 10n nV  (9) 

 
(a) Πn+1,A 

 

 
(b) Πn+1,B 

Fig. 5. Illustration of Πn+1,A and Πn+1,B. 
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Therefore, Eq. (7) is equal to 0n+1. As a result, λn+1 = 1 

− 1
2n

 is an eigenvalue for Πn+1 and its eigenvector Vn+1 = 

{{Vn}n, 0n}.                                                                         □ 

5.3.2 The 2nd Largest Eigenvalue 

Theorem 5.3: If λ′ >1 − 1
2( 1)n -

 is an eigenvalue for 

the afore-described transition matrix of MC-1 with n data 
items, then λ′ = 1. 

Proof Sketch: We will also use induction to prove the 
theorem. Due to space limitation, we only present a sketch 
of the proof. Please refer to [21] for details. 

Firstly, as shown in Section 5.2, when n = 3, the only 

eigenvalue that is greater than 1 − 1
2( 1)n -

= 3
4

 is 1. 

Now assume λn = 1 − 1
2( 1)n -

 is the second largest 

eigenvalue for Πn, while there exists ε> 0 such that λ′n+1 = 

1 − 1
2n

 + ε is the second largest eigenvalue (i.e., λ′n+1< 1) 

for Πn+1. Denote one of its corresponding eigenvectors as 
 

 { }1 2, , , ,mv v v+¢ =1 LnV  (10) 
 

where m = (n + 1)!. Therefore, we have 
 
 1 1 1( ) ,n n nIl+ + + + +¢ ¢Õ - =1 10n nV  (11) 

 
which is equivalent to 
 

 

1 1 1

1, 1 1, 1

( )
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V
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    (12) 
 
We have shown in [21] that in the second item of the 

above equation, i.e., (Πn+1,B – 1
n

In+1) V'n+1, there is one 

group whose summation is 0n. Given that the overall 
summation equals 0n+1, there must be one group in (Πn+1,A 

– 1n
n
- (λn+ ε')In+1)V'n+1, whose result is also 0n. This mean 

that there exists an eigenvalue λn = 1 − 1
2( 1)n -

 + ε' for 

Πn, which contradicts to our assumption.                 □ 

5.4 Analysis of the Convergence Rate 
Now given the second largest eigenvalue of the 

transition matrix, we now can analyze the convergence rate 
of MC-1 based on Theorem 5.1. Specifically, suppose we 
define convergence as 

 , 2 2( ) ,m m
j E m j jsup O c n ea p l l -
Î - = = <  (13) 

 
where c is a constant, ε> 0 is a benchmark for convergence, 
and n is the number of data items. On the other hand, 
 

 
2( 1) 2( 1) 2( 1)1 1 11 1 .

2( 1) 2( 1)

m mm n n n

n n e

- -
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  (14) 
 
Let m = t × 2(n − 1), then  
 

 1 11 .
2( 1)

m t

n e
æ ö æ ö- £ç ÷ ç ÷- è øè ø

 (15) 

 
As a result, MC-1 converges if we have 
 

 1 ,
t

c n
e

e-æ ö <ç ÷
è ø

 (16) 

 
which is equivalent to 
 
 ln ln .t n ce> +  (17) 

 
Therefore, to converge, m need to satisfy the following 
 

 2( 1) ( ln ln ) 2( 1) ( ln ).m t n n c n O n ne e= ´ - > + ´ - =  
  (18) 

 
Thus, it takes O(εn ln n) steps for MC-1 to converge. In 

other words, the user need to make O(εn ln n) accesses 
before the access appears to be uniformly at random. 

6. Performance Evaluation 

6.1 Evaluation Setup 
To evaluate the performance of the proposed scheme, 

we have collected two user access traces from two popular 
cloud service providers: YouTube [22] and Baidu [23]. As 
shown in Figs. 6(a) and (b), both the YouTube user and the 
Baidu user have 256 files stored at the server. Different 
files have been accessed with different frequencies over 
time. Moreover, we have created an additional user who 
always requests the same file from the server, called the 
SFA (Single File Access) user, as shown in Fig. 6(c). We 
use the SFA user to emulate an extreme access pattern. 
The total number of files for the SFA user is also 256. 

6.2 Access Frequency Privacy 
To study how well our proposed scheme preserves a 

cloud user’s access frequency privacy, we propose to use 
entropy to measure the distribution of the user’s access 
frequencies to different files. Specifically, let Ci denote the 
number of accesses to the file stored at storage location i. 
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Then, the access frequency to location i is Fi = ,i

j j

c
cå

 and 

the entropy of access frequency is HF = −åiFi log(Fi). For 
example, HF of the YouTube and Baidu traces is around 
7.6 and 6.5, respectively, which can be calculated by 
counting the number of accesses to each file in Figs. 6(a) 
and (b). Clearly, for a given set of files stored at the server, 
the maximum entropy is achieved when all file locations 
have been accessed with an equal probability. This means 
that, the maximum entropy for accessing 256 files is max

FH  

(256) = −256 × 1 1log
256 256

æ ö
ç ÷
è ø

 = 8. 

We evaluate how the entropy of access frequency 
changes as the number of access rounds increases. Fig. 7 
plots the results (averaged over 100 simulation runs) for 
different access scenarios. It can be seen clearly from the 
figures that, with our scheme, the entropy of access 
frequency improves over the original trace, and converges 
gradually to the maximum entropy in all simulated 
scenarios. This confirms our analytical study in Section 4 
and Theorem 4.2 that the access frequency distribution 
converges towards the uniform distribution in the long run. 

6.3 Data Item’s Location Privacy 
As discussed in Section 4, when the user employs our 

proposed scheme, the cloud server loses track of a certain 
data item gradually over time. In other words, from the 
server’s perspective, the uncertainty of a data item’s 
storage location increases gradually over time. Similar to 
the evaluation of access frequency privacy, we also use 
entropy to measure the uncertainty of a particular data 

item’s location from the server’s perspective. It is defined 
as HL = −åipi log(pi), where piis the probability that the 
data item is at location i from the server’s perspective. We 
evaluate how the entropy of the data item’s location 
distribution grows as the number of access rounds 
increases. For each access scenario, we collect the 
statistics of the most accessed data item and the least 
accessed data item, and results (averaged over 100 
simulation runs) are plotted in Figs. 8(a) and (b), 
respectively. From the figures, we can see that a data 
item’s location distribution entropy reaches the maximum 
regardless of their real access frequency. Note that, 
without our proposed scheme, a data item’s location 
distribution entropy is zero because its location is fixed 
and known to the server. Also note that based on the 
analysis in Section 5, the convergence rate for SFA is O(εn 
ln n) = O(ε · 256 ln 256) ≈ O(1400ε). From Fig. 8(a), we 
can see the curve for SFA converges to max entropy after 
around 1500 steps, which confirms our analysis of the 
convergence rate in Section 5. 

7. Overhead Analysis 

7.1 Communication and Computational 
Overhead 

With our proposed scheme, to access a single data item, 
the cloud user needs to obtain the following information 
from the cloud server: 
•  Three index files at each level of the storage 

hierarchy; each index file records the storage locations 
of m index files at its next lower level and it takes log 

   
(a) YouTube (b) Baidu (c) SFA 

Fig. 6. Data access traces and distribution used in the performance evaluation. 
 

   
(a) YouTube (b) Baidu (c) SFA 

Fig. 7. The entropy of access frequency vs. the number of access rounds for a particular simulation run under 
different access scenarios. In (c), because the SFA user always requests the same data item at each round, the 
entropy of access frequency without using our proposed scheme is always zero, which is not shown in the figure. 
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n bits to represent a storage location.  
•  Three index files at each level of the storage 

hierarchy; each index file records the storage locations 
of m index files at its next lower level and it takes log 
n bits to represent a storage location.  
• One access history file at each level of the storage 

hierarchy; each access history file records the IDs and 
storage locations of three index files (at this level) that 
were accessed in the previous round; hence, it 
contains six fields and each field is log n-bit long.  
• The desired data item and two dummy data items; let τ 

denote the size of each data item in bits.  
 
Recall that there is a total of logm n levels in our 

proposed hierarchical storage structure. Therefore, the 
overall communication and computational overhead for 
accessing a single data item can be calculated as: 
  
 &OH log 3log 6log log 3 .c c m mm n n n n t= × + × +  (19) 

 
It is easy to verify that: 
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7.2 Storage Overhead 
As explained in Section 3.1, the total number of index 

files in our proposed scheme is 1 .
1

n
m

-
-

 Each index file 

recordsthe storage locations of m index files at its next 
lower level and it takes log n bits to represent a storage 
location. Therefore, the overall storage overhead at the 
cloud server can be calculated as: 

 

 s_server
1OH log .
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nm n n
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It is easy to verify that: 
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At the user side, to operate our proposed scheme, the 
cloud user needs to store one access history file, three 
index files, and three more index files or data items at any 
given time. Thus the required storage at the user side is: 

 
 s_userOH 6log 3 log max{3 log , 3 }.n m n m n t= + +        (23) 

7.3 Overhead Comparison 
Based on the above overhead analysis, we set m = 4 in 

our scheme. In Table 2, we compare our scheme with one 
of the state-of-the-art access pattern preservation schemes 
for single-cloud-server systems [16]. 

 
Table 2. Overhead Comparison 

 Our Scheme (m=4) Scheme in [16] 

Comm./Comp O((log n)2 + τ) O(log n · τ) 

Storage (server) O(n max{log n, τ}) O(n · τ) 

Storage (user) O(max{log n, τ}) O( n  · τ) 
 
In practical cloud storage applications, the size of a 

data item (τ, in bits) is usually larger than log n bits, where 
n is the total number of data items. E.g., [16] proposes the 
data item size to be 64 KB, i.e., 216 bits. It is generally 
impractical for a user to have more than 

1622  data items. 
Under this assumption, it is interesting to see that our 
scheme is more efficient. Specifically, our scheme (i) 
consumes similar storage space at the cloud server; (ii) 
usually incurs significantly less communication and 
computational overhead; and (iii) requires significantly 
less storage space at the cloud user, which facilitates the 
employment of our proposed scheme on thin user devices 
such as mobile phones. Note that the better efficiency 
performance of our scheme is achieved under a less 
stringent privacy requirement than [16]; instead of 
requiring strict privacy protection to the data access pattern, 
our scheme aims to protect the privacy of the data access 
pattern in the long run. 

8. Related Work 

Although many schemes [4, 5, 24] have been proposed 

  
(a) (b) 

Fig. 8. (a) Average entropy of location distribution vs. the number of access rounds for the most frequently 
requested data item, (b) Average entropy of location distribution vs. the number of access rounds for the least 
frequently requested data item. 
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to protect data confidentiality and data integrity for the 
cloud computing paradigm, little effort has been made to 
protect users’ access pattern privacy. Private Information 
Retrieval (PIR) [9, 25, 26], Oblivious RAM [10-19] and 
Steganographic File Systems (SFS) [27-29] are the works 
most related to our solution. 

Private Information Retrieval: PIR schemes aim to 
allow clients to retrieve information from a database while 
maintaining the privacy of the queries to the database. 
Fully implementing the PIR notion is, however, expensive. 
As shown by Sion et al. [9], deployment of any single-
server PIR protocol is not necessarily more efficient than a 
simple transfer of the entire database due to computational 
costs. On the other hand, PIR schemes typically do not 
address data confidentiality, which makes PIR schemes 
unsuitable to be applied in the un-trusted cloud 
environments. 

Oblivious RAM: In order to prevent the users’ access 
pattern from being revealed, Oblivious RAM (ORAM) 
[10-19] has been proposed. In a latest version of ORAM, 
Stefanov et al. [16] proposed a framework for practical 
ORAM that significantly reduces the communication 
overhead in practical scenarios (e.g., 220<n< 235, where n is 
the number of data items). In Section 7, we have shown 
that our scheme is much more efficient in terms 
communication, computational and storage overheads in 
practical cloud storage applications under a less stringent 
privacy requirement. 

Steganographic File Systems: Research efforts on 
steganographic file systems [27-29] are also related to our 
proposed design. The major differences lie in that, the 
research on SFS targets at protecting the information about 
existence and/or locations of sensitive files through hiding 
both short-term and long-term access patterns, while our 
proposal mainly targets at protecting long-term access 
pattern at low cost. 

There is a concurrent effort [30] that addresses a 
similar problem as the one in our work. Their solution and 
ours share similar high-level ideas such as usage of 
dummies, hierarchical storage structure and file reshuffling. 
However, there are several key differences between the 
two solutions. E.g., our solution yields provable security 
and overhead performances and does not require user-side 
LRU cache or an empirical statistical access model. 

9. Conclusions and Future Work 

In this paper, we present a lightweight solution to the 
preservation data access pattern privacy in un-trusted 
storage. Rigorous proofs have been provided to show that 
the proposed scheme can provide full protection to data 
access pattern privacy in the long run. Detailed analysis 
and extensive evaluations have also been conducted to 
show that the scheme can protect the data access pattern 
privacy effectively after a reasonable number of accesses 
have been made. In the future work, we plan to enhance 
the scheme such that it can support private and efficient 
data updates, including data changes, data insertions and 
data deletions. 
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