
IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

282

IEEK Transactions on Smart Processing and Computing

Light-weight Preservation of Access Pattern Privacy in
Un-trusted Storage

Ka Yang1, Jinsheng Zhang2, Wensheng Zhang2, and Daji Qiao1

1 Electrical and Computer Engineering, Iowa State University / Ames, IA 50010, USA {yangka, daji}@iastate.edu
2 Computer Science, Iowa State University / Ames, IA 50010, USA {alexzjs, wzhang}@iastate.edu

* Corresponding Author: Ka Yang

Received July 14, 2013; Revised July 29, 2013; Accepted August 12, 2013; Published October 31, 2013

* Extended from a Conference: Preliminary results of this paper were presented at the 16th European Symposium on
Research in Computer Security (ESORICS’11).This present paper has been accepted by the editorial board through the
regular reviewing process that confirms the original contribution.

* Regular Paper

Abstract: With the emergence of cloud computing, more and more sensitive user data are
outsourced to remote storage servers. The privacy of users’ access pattern to the data should be
protected to prevent un-trusted storage servers from inferring users’ private information or
launching stealthy attacks. Meanwhile, the privacy protection schemes should be efficient as cloud
users often use thin client devices to access the data. In this paper, we propose a lightweight scheme
to protect the privacy of data access pattern. Comparing with existing state-of-the-art solutions, our
scheme incurs less communication and computational overhead, requires significantly less storage
space at the user side, while consuming similar storage space at the server. Rigorous proofs and
extensive evaluations have been conducted to show that the proposed scheme can hide the data
access pattern effectively in the long run after a reasonable number of accesses have been made.

Keywords: Privacy, Access pattern, Un-trusted storage, Cloud computing

1. Introduction

With the emergence of cloud computing, data
outsourcing is becoming more and more prevalent. Cloud
storage [1, 2] (such as Amazon Simple Storage Service
and Rackspace Cloud Files) enables enterprise and
individual users to enjoy flexible, on-demand and high-
quality services, without the need to invest on expensive
infrastructure, platform or maintenance. Although
envisioned as a promising service platform for the next-
generation of Internet, cloud computing is facing great
privacy and security challenges that may impede its fast
growth and increased adoption if not well addressed. For
example, one of the security concerns for the user is that
the service provider itself may breach the users secrecy
and privacy. For example, Google has been criticized for
tapping into its users data. Rising to the challenges,
researchers have proposed many schemes [3-5] to protect
the confidentiality and integrity of users’ outsourced data.
Unfortunately, limited research has been conducted on the

protection of users’ privacy during their access to the
storage server, such as the access frequency to each data
item and the linkage between accesses of data items.
Leakage of such access pattern information may enable
potential privacy attacks such as focused attacks against
selected data items. Servers may also infer a user’s activity
pattern or private interest by tracking the user’s access to a
particular data item.

To strictly protect the privacy of data access pattern, the
intention of every data access operation should be hidden so
that observers of the operations cannot gain any meaningful
information. Conforming to this strict requirement of access
pattern privacy, Chor et al. [6], Ostrovsky et al. [7] and Itkis
[8] introduced the notions of the private information
retrieval (PIR) in an information theoretical setting and the
computational PIR by restricting the database to perform
only polynomial-time computations. Fully implementing the
PIR notion is, however, expensive. As shown by Sion et al.
[9], deployment of any single-server PIR protocol is not
necessarily more efficient than a simple transfer of the entire

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

283

database. Another approach to the strict preservation of data
access pattern privacy is based on the notion of oblivious
RAM (ORAM) [10-19]. In a latest ORAM implementation
[16], about log n data items of the database should be
scrambled every time after a single data item has been
requested, where n is the total number of data items in the
database. Let τ denote the size of a data item in bits. This
ORAM scheme requires at least O(n t×)user storage and
incurs a communication and computational complexity of
O(log n × τ). The cost of this scheme is still rather expensive
especially when the number of data items is large and the
data are accessed frequently.

Although strict protection of data access pattern privacy
is attractive, less strict protection, such as protecting the
privacy of long-term access pattern, is also very useful in
practice. For example, a malicious server may use the
statistical data access pattern of a user to infer the user’s
private information or conduct stealthy attacks. Moreover,
being lightweight is also highly desired by users, as many of
them often access the cloud with thin client devices such as
smartphones. Based on these considerations, we propose a
lightweight scheme to preserve the privacy of long-term
data access pattern in this paper. The outline of the proposed
scheme is as follows. Every time when a data item is needed
by a user, (i) the user retrieves the desired data item together
with additional dummy data items to hide the actual retrieval
target; and (ii) the retrieved data items are re-encrypted and
re-positioned before being stored back to the server to
perturb the connections between data items and their storage
locations at the server. The scheme records the storage
locations of data items in index files, which are stored in a
pyramid-like hierarchical structure at the storage server to
reduce communication, computational and storage
overheads. Similar to data items, the access pattern to index
files is also protected with additional dummies and re-
positioning of the files after access. A set of delicately
designed rules are used in the selection of dummy data items
and index files as well as the repositioning of the files,
which ensures that the connections between data items and
their storage locations are reshuffled gradually, become
more and more difficult to trace as the number of accesses
increases, and eventually become fully untraceable.
Rigorous proofs and extensive evaluations have been
conducted to demonstrate that the proposed scheme can hide
the data access pattern in the long run, and the number of
accesses required to preserve the access pattern privacy is
reasonable in many situations.

The rest of the paper is organized as follows. Section 2
describes the system models. The proposed scheme is
elaborated in Section 3. Section 4 and Section 5 analyze its
security performances and convergence rate respectively.
Section 6 reports the evaluation results and Section 7
presents the overhead analysis. Section 8 discusses the
related work. Finally, Section 9 concludes the paper.

2. Models and Assumptions

2.1 System Model
We consider a basic remote storage system with a

storage server and a single user. The user stores its sensitive
data on the remote server, which in turn provides an online
interface for the user to access the outsourced data. Later on,
when the need for a data item arises, the user requests it
from the server, updates the data item after usage, and then
uploads the updated data item back to the server. Similar to
[10-19], we assume that all the data items stored at the
server have the same size so the server cannot identify a data
item from its size. In practice, this can be achieved
conveniently by appending padding bits to short data items
or dividing large data items into smaller ones.

2.2 Security Model
We assume that the storage server is curious about the

user’s private information and may launch malicious
attacks. Specifically, it may be interested in obtaining the
user’s data access pattern over the long term, which
primarily includes the following information: which data
items that have been requested by the user and the number
of times that a particular data item has been requested by
the user.

If the access pattern information is obtained, the server
may be able to launch various attacks. For example, the
server may attempt to infer the user’s activity pattern or
private interest via tracking the user’s access to some
particular data items. The server may also launch focused
attacks towards user’s data that are accessed with very
high frequency, or stealthily delete data that are never
accessed to save its storage and maintenance costs without
being noticed by the user.

As for the user, we assume that it has a primitive
encryption function that generates different cipher-texts
over different input, and the server does not have non-
negligible advantage at determining whether a pair of
encrypted items of the same length represent the same data
item. We assume that data confidentiality and integrity are
protected using existing techniques and the communication
channel between the user and the server is secured using
mechanisms such as SSL/IPSec. We do not consider denial
of service attacks or timing attacks as they can be
addressed independently from this work.

2.3 Design Goal
Our main design goal is to develop a lightweight

solution to prevent the server from knowing the user’s
long-term access pattern to the data stored at the server,
while allowing the user to access the outsourced data with
low communication and computational overhead.
Specifically, we preserve the access pattern privacy by
breaking the connections between the data items and their
storage locations gradually.

3. The Proposed Scheme

3.1 System Setup
Before describing our proposed scheme in detail, we

first explain the system setup.

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

284

3.1.1 Hierarchical Storage Structure at the
Server

We study a system where a user stores n distinct data
items (denoted by di, i = 1, ··· , n) at a storage server. All
data items are encrypted with the user’s secret key before
uploading. In addition to data items, the server stores a
hierarchy of index files with the following features:
• As shown in Fig. 1, there is a total of T = ⌈logmn⌉	 ≥ 1

levels of index files, where m> 1 is a design parameter.
In Section 7, we analyze the relation between m and
the communication, computational and storage
overheads incurred by our solution. To simplify the
presentation, we assume that logmn is an integer in the
rest of the paper.

• At level t (t = 1, ···, T), there are t

n
m

 index

files(denoted by t
jI , j = 1, ···, t

n
m

). So the total

number of index files in the hierarchy is

1

1 .
1

T

tt

n n
mm=

-
=

-å

• Each index file records the storage locations of m
index files at its next lower level. Specifically, t

jI at
level t contains the storage location information of the
following index files at level (t − 1): 1

(1) 1 ,t
j mI -
- +

1
(1) 2 ,t

j mI -
- + ···, 1 ,t

jmI - as illustrated in the callout box in
Fig. 1.

• There is only a single index file at the top level (i.e.,
level T): 1 .TI
• Data items form the bottom level (i.e., level 0) of the

hierarchy.
• Files at different levels of the hierarchy are stored at

non-overlapping storage spaces.

Note that, as shown in Fig. 1, there is no fixed order-

correspondence between an index file (or a data item) and
its storage location. This is due to the design nature of our
proposed scheme, whose key idea is to randomize the
storage locations of index files and data items after each
access. Details will be discussed in Section 3.2.

3.1.2 Iterative Query Process by the User
With such a pyramid-like hierarchical storage structure,

we have the following observation about the relation
between a data item and its index files: the storage location
of the data item ds is recorded in the level-1 index file

1
(,1) ,f sI whose storage location information is in turn

recorded in the level-2 index file 2
(, 2) ,f sI so on and so forth,

till the top-level index file 1 ;TI here, f(s,t) is defined as f(s,t)

= .t

s
m

é ù
ê úë û

 This relation is illustrated in Fig. 1 as a linked

chain of gray boxes from top level T to bottom level 0.
Based on the above observation, we know that the user

can obtain the desired data item ds by performing a
sequence of queries to obtain these T index files in the
chain: 1 1

1 (, 1) (,1), , ,T T
f s T f sI I I-

- L in a top-down manner

Fig. 1. System setup. Data items and index files form a pyramid-like hierarchical storage structure at the server.
Each index file records the storage locations of m index files at its next lower level. For example, the content of

(,)
t
f s tI is shownin the callout box, and the m level-(t − 1) index files associated with (,)

t
f s tI are shown as bold boxes in

the figure. Here, (,) t

sf s t
m

é ù= ê úë û
. To obtain data item ds, the user performs a sequence of queries iteratively in a top-

down manner, to obtain T index files (marked as gray boxes), one at each level of the hierarchy.

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

285

through the hierarchy; once 1
(,1)f sI is obtained, the user

gets to know the storage location of ds and can then issue
the final query to obtain the data item. After the access, the
data items and index files are updated, re-encrypted and
uploaded back to the server.

To simplify the presentation, we assume that the user
requests the data items in rounds and the user requests a
single data item in each round. In the following, we
explain our proposed scheme in detail. Table 1 lists the
notations to be used in the rest of the paper.

Table 1. Notations Used in the Paper

Notation Description
n the total number of data items
D the set of all data item IDs

m the number of storage locations recorded in an
index file

t
jI the j-th index file at level t of the hierarchy

x (j,t) the set of IDs of files whose storage locations are
recorded in the level-t index file of ID j

 the set of storage locations of level-t files

f(i,t) the ID of the index file that corresponds to data
item di at level t

t
preQ (t	≥1) the set of IDs and locations of level-t index files

accessed in the previous round

t
curQ (t	≥1) the set of IDs and locations of level-t index files

accessed in the current round
0
preQ the set of IDs and locations of data items accessed

in the previous round
0
curQ the set of IDs and locations of data items accessed

in the current round

3.2 Scheme Description

3.2.1 Scheme Overview
Our proposed scheme is executed every time when the

user needs to request a data item. The key ideas of the
scheme include: (i) extra dummy data items and index files
(called dummies for short) are requested to hide the actual
files of the user’s interest; (ii) multiple dummies are
selected so that the user’s request at each round has the
same format, which is a necessity to hide the access pattern
[10] and (iii) the retrieved files are re-encrypted and re-
positioned before being stored back to the server so as to
break the connections between files and their storage
locations at the server. Generally, these rules ensure that
the connections between files and their storage locations
are reshuffled gradually, become more and more difficult
to trace as the number of accesses increases, and
eventually become fully untraceable. Detailed explanations
and analysis will be presented in the following sections.

Assumption: The following assumption is made on the
initial condition when our scheme starts: for any t = 1, ··· ,
T − 1, the mappings between level-t and level-(t − 1) files
are unknown to the server. In other words, for any
particular data item, the server has no knowledge about the

corresponding index files; similarly, for any particular
index file, the server has no knowledge about the
corresponding index files at the upper layers.

Data Structures Recording Access History: Our
scheme makes use of past file access history when
selecting dummies. To facilitate such mechanism, the
historical information about the previous round of file
access at layer t is recorded in a data structure denoted as

t
preQ , which consists of six fields: DR, DS and DN recording

the file IDs, and LR, LS and LN recording their storage
locations, respectively. The data structures are stored in
cipher-text in a designated storage space at the server, and
we denote the storage location of t

preQ as Hist[t].
Structure of the Algorithm: The pseudo-code of our

scheme is presented in Fig. 2. The scheme starts by
selecting dummy data items. Then, it works iteratively to
select, download, process and upload the index files, from
the top level to the bottom level of the index hierarchy. In

Fig. 2. Pseudo-code of the proposed scheme.

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

286

each iteration, it performs similar operations including
Selection & Downloading, Random Reshuffling, and Re-
encryption & Uploading of index files. Finally, the desired
data item and the selected dummy data items are
downloaded, randomly reshuffled, re-encrypted and
uploaded. Detailed explanations of the operations are
presented next, with a simple example given in Fig. 3.

3.2.2 Selection of Dummy Data Items

When the user intents to retrieve a data item (denote its
ID by 0

curQ .DR), it also requests the following dummy data
items to conceal its intention:
• the first dummy (whose ID is denoted as 0

curQ .DS): the
dummy that may swap its storage location with

0
curQ .DR after access with a probability of 1/2;

• the second dummy (whose ID is denoted as 0
curQ .DN):

the dummy that will not swap its storage location with
others.

0
curQ .DS and 0

curQ .DN are selected to make sure that the
user’s request at each round has the same format: the user
always requests three data locations, out of which two and
only two of them are from the ones accessed in the
previous round. Note that requiring user’s request at each
round to have the same format is necessary to hide the true
access pattern [10]. Specifically, it hides the information
about whether user’s requests at two rounds are intended
for the same data item. Also note that the second dummy is
needed in order to guarantee that each access can keep the

Fig. 3. An example of the access procedure of a user. There is a total of n = 16 data items and T = 2 levels of index
files stored at the server. We use id ' to represent that data item di appears differently after re-encryption. In this
example, data items d1, d9, d10 were accessed in the previous round. It shows how the user operates when it is
interested in obtaining data item d3 in the current round.

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

287

same format (please refer to [21] for detailed explanations).
To maintain the same format in each access, the data
structure 0

preQ is downloaded from the server, which
records the information about the data items (namely, the
data IDs and their corresponding locations) accessed in the
previous round. Then, the dummies for the current round
are selected according to the following rules:
• For the first dummy (i.e., 0

curQ .DS): (i) If the intended
data item is the same as the intended data item or the
first dummy in the previous round, then the first
dummy will be selected uniformly at random from the
set of all data items excluding the intended data item
of the current round. (ii) Otherwise, the first dummy
will be randomly selected from the intended data item
or the first dummy in the previous round with equal
probability. (Refer to lines 3 to 7 in Step 1 as shown
in Fig. 2.)
• For the second dummy (i.e., 0

curQ .DN), its selection
depends on the selection results of the first dummy: (i)
If both the intended data item and the first dummy
have appeared in the previous round, the second
dummy will be selected uniformly at random from the
set of all data storage locations excluding the
locations accessed in the previous round. (ii)
Otherwise, the second dummy will be selected
uniformly at random from the locations accessed in
the previous round excluding locations of the already-
selected files. (Refer to lines 12 to 20 in Step 2 as
shown in Fig. 2 when t = 0.)

In the example given in Fig. 3, in the previous round,

data #10 was intended by the user and data #1 was selected
as the first dummy. Since data #3 is needed in the current
round (i.e., case (ii) in the first dummy selection rules), the
user randomly selects the first dummy, which is data #1 in
this example, from data #10 and data #1 (as shown by step
3). As the selected data items did not both appear in the
previous round (i.e., case (ii) in the second dummy
selection rules), the second dummy’s location, which is 7
(as shown by step 15), is selected from data #10 and data
#9’s locations (i.e., data locations #7 and #11).

3.2.3 Selection, Downloading, Processing
and Uploading of Index Files

First, the single top-level index file is downloaded and
decrypted, and its ID is recorded in T

curQ .DR, T
curQ .DS, and

T
curQ .DN, i.e., T

curQ .DR = T
curQ .DS = T

curQ .DN = 1 (as shown
by step 4 in the example of Fig. 3). Then, three index files
for each level t, where (T − 1) ≥ t ≥ 1, are selected,
downloaded, processed and uploaded, in an iterative and
top-down manner. Without loss of generality, the
following describes the operations for iteration t.

3.2.3.1 Selection & Downloading of Level-t Index

Files: The files that contain the level-t indices of the
intended data item (0

curQ .DR) and the first dummy
(0

curQ .DS) are first selected to access. The IDs of these files
are denoted as t

curQ .DR and t
curQ .DS respectively. Note that,

these file IDs can be found out by using the afore-defined
f(·,·) function, i.e., t

curQ .DR = f(0
curQ .DR, t) and t

curQ .DS =
f(0

curQ .DS, t). Then, similar to the selection of dummy data
items, additional dummy index files are selected to make
sure that, in each round, three level-t index files are
accessed and exactly two of them appeared in the previous
round. The following rules are applied in the selection:
• For the first dummy index file (i.e., t

curQ .DS): If the
intended data item and the first dummy share the same
level-t index file, the first dummy index file is re-
selected uniformly at random from the index files
whose storage locations are stored in files 1t

curQ + .DRor
1t

curQ + .DS, i.e., the level-(t + 1) intended index file and
the first dummy index file downloaded in the previous
iteration of this algorithm. (Refer to lines 8 to 10 in
Step 2 as shown in Fig. 2.)
• For the second dummy index file (i.e., t

curQ .DN): (i) If
the intended index file and the first dummy index file
have both appeared in the previous round, the second
dummy index file will be selected uniformly at
random from all level-t index file locations excluding
the locations that appeared in the previous round. (ii)
Otherwise, the second dummy index file will be
selected uniformly at random from the locations that
appeared in the previous round excluding locations of
the already-selected files. (Refer to lines 12 to 20 in
Step 2 as shown in Fig. 2 when 0.t ¹)

After the level-t index files have been selected, the

locations of files t
curQ .DR and t

curQ .DS can be found by
searching their indices in the downloaded level-(t + 1)
index files, i.e., files 1t

curQ + .DR and 1t
curQ + .DS. Then the

locations of the three level-t index files are provided to the
server and the files can be downloaded. Note that, the
locations are presented to the server in an arbitrary order,
so that the server cannot distinguish between desired index
files and dummies. The downloaded files are then
decrypted with the user’s key.

In the example given in Fig. 3, since the intended data
item and the first dummy share the same level-1 index file

1
1I , the user randomly selects a new first dummy index file,

which is 1
3I in this example, from level-1 index files { 1

2I ,
1
3I , 1

4I } (as shown by steps 6 and 7). Then the user looks
up 2

1I to find out the storage locations 1
curQ .LR and 1

curQ .LS
(as shown by step 8). Since both 1

1I and 1
3I were accessed

in the previous round, the user selects the second dummy
index file with location #4 (as shown by step 9). Hence,
the user retrieves the files from level-1 storage locations #2,
#3 and #4.

3.2.3.2 Random Reshuffling of Selected Level-t Index

Files: The intended index file (t
curQ .DR) and the first

dummy index file (t
curQ .DS) may swap their storage

locations with a probability of 1/2. If the swap happens,
the index information of these files should be updated in

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

288

their index files 1t
curQ + .DR and 1t

curQ + .DS, respectively. In the
example given in Fig. 3, since files 1

curQ .DR and 1
curQ .DS

are swapped, the user updates 2
1I accordingly (as shown

by steps 11 and 12).

3.2.3.3 Re-encryption & Uploading of Index Files:

Now, we have completed the processing of level-(t + 1)
index files 1t

curQ + .DR, 1t
curQ + .DS, and 1t

curQ + .DN. To hide content
and/or location changes made to them, these files should
be re-encrypted before being uploaded back to the server.
In our scheme, re-encryption is performed by applying the
Cipher Block Chaining (CBC) encryption techniques [20]
on the file content, where the first block of the file is a
non-reappearing nonce. The user’s key is used inthe re-
encryption. This way, the same secret key can be reused
for encrypting all files, which simplifies the key
management at the user. Such re-encryption process
ensures that a computationally bounded adversary does not
have non-negligible advantage at determining whether a
pair of encrypted data items (before and after re-encryption,
respectively) carry the same data content.

After re-encryption, files 1t
curQ + .DR, 1t

curQ + .DS, and
1t

curQ + .DN are uploaded to their locations, respectively, but
in an arbitrary order to make it difficult for the server to
track these files. At the end of iteration t, data structure

t
preQ should be replaced by ,t

curQ then re-encrypted and
uploaded to location Hist[t]. This way, next time when

t
preQ is downloaded, it will reflect the mostly recent

history.
In the example in Fig. 3, 2

1I and 1
curQ are re-encrypted

and uploaded to the server at the storage locations #0 and
Hist[1], respectively (as shown by step 13).

3.2.4 Downloading, Processing and
Uploading of Data Items

After the above steps, the level-1 index files have been
downloaded and decrypted. Based on the index
information in these files, the desired data item and two
additional dummy data items can be downloaded from the
server and decrypted with the user’s key. Upon the user’s
access to the desired data item has been completed, the
intended data item and the first dummy may swap their
storage locations with a probability of 1/2, and if the swap
happens, changes will be made to the level-1 index files

1
curQ .DR and/or 1

curQ .DS, respectively. Finally, the three
level-1 index files and the three data items are re-encrypted
and uploaded to the server. Also, data structure 0

preQ is

updated to 0
curQ , re-encrypted and uploaded to the server.

The re-encryption and uploading operations are performed
in the similar manner as described above.

In the example given in Fig. 3, the user looks up 1
1I to

find the storage locations 0
curQ .LR = 5 and 0

curQ .LS = 4. As
afore-explained, the user selects the second dummy’s
storage location 0

curQ .LR = 7 (as shown by steps 14 and 15).

Since data items 0
curQ .DR and 0

curQ .DS are swapped, the
content of 1

1I is updated (as shown by steps 17 and 18).
Finally, the re-encrypted level-1 index files, 0

curQ and data
items are uploaded to the server respectively.

Remark: Note that there is not need to include the
second dummy data items/index files in the reshuffling
process. This is because the server does not know which
two data items/index files are involved in the reshuffling,
because all three files are re-encrypted before uploading.

4. Security Analysis

In this section, we show that the proposed scheme can
preserve the privacy of user’s access pattern in the long
run. That is, after a sufficiently large number of accesses,
the frequency with which each data item has been accessed
cannot be figured out by the server. Then we discuss the
practical implications of this security property through
analyzing how our scheme can deal with some typical
attacks that are based on the knowledge of access pattern.

4.1 Access Pattern of Index Files
We first show that the access pattern of index file

locations, which can be observed by the server, does not
reveal extra information about the data access pattern. In
the proposed scheme, index files are used to facilitate user
query and data access. The content of an index file is
protected by being re-encrypted after each access, based on
the user’s secret key and a random non-repeating nonce.
Hence, it is impossible for the server to gain information
about the data access pattern from the content of index
files. The following theorem states that observing the
access pattern of index file storage locations does not
reveal more information about data access pattern than
observing only the access pattern of data storage locations.

Theorem 4.1: The storage server cannot gain any ad-
vantage in inferring user’s data access pattern through
observing the access pattern of index file storage locations.

Proof: Due to space limitation, the proof of Theorem
4.1 is omitted in this paper. Please refer to our full
technical report [21] for details. □

4.2 Access Pattern of Data Items
As the observed access pattern of index file locations

does not help in inferring data access pattern, we next
study what can be inferred from observing only the access
pattern of data storage locations. The following theorem
formally states the property that, if the server can only
observe the access pattern of data storage locations, the
data access pattern, namely, the data item requested by the
user and the frequency with which each data item has been
accessed by the user, can be preserved in the long run.

Theorem 4.2: If a user has accessed the data items,
despite the user access sequence, for a sufficiently large
number of times, each storage location at the server is
accessed uniformly at random.

Proof: The proof of Theorem 4.2 has been reported in

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

289

the preliminary version of this paper [34], thus is omitted
in this paper. Please refer to [34] for details. □

4.3 Discussion
To further understand the practical implications of the

above security properties, In the following, we discuss a
few typical attacks that are based on the knowledge of data
access pattern, and analyze how our scheme can deal with
the attacks.

4.3.1 Security against Tracking Data Items
Suppose the server has identified a particular user data

item via other means, e.g., physical spying. It may want to
keep track of this data item thereafter. Using our proposed
scheme, due to the property described in Theorem 4.2,
after a sufficiently large number of accesses, the server
does not have non-negligible advantage at determining
which location the target data item is at. For example, after
the first round that the target item has been accessed, from
the server’s perspective, the target item may be stored at
any of the three accessed locations with an equal
probability of 1/3. Then if any of these three locations is
accessed in the next round, the probability will be divided
further among the newly accessed locations. Therefore, by
solely observing the storage locations accessed by the user,
the server could lose track of the target data item quickly.

4.3.2 Security against Focused Attacks on
Selected Data Items

Some of the user’s data items may be requested with
very high frequency. These files are often important to the
user. If a malicious server knows which data items are
frequently accessed, it may launch intensive attacks on the
data, attempting to find out the content or contextual
information of the data. Note that, such attacks are
sometimes feasible in practice, for example, when the
adopted data encryption algorithm or the key chosen by the
user is not sophisticated enough, or some side information
about the data can be obtained in other means. Using our
proposed scheme, due to the property described in
Theorem 4.2, all data storage locations will be equally
accessed in the long run. Hence, the server cannot identify
which data items are frequently requested by the user.
Similarly, some of the user’s data items may be requested
with very low frequency, e.g., backup data. A malicious
server may want to stealthily delete these rarely-accessed
user data items to save storage and maintenance cost for
itself without being noticed by the user. Such attack can
also be stopped as our proposed scheme prevents the
server from identifying rarely requested data items.

5. Analysis of Convergence Rate

As shown in the previous section, using the proposed
scheme, every data item is uniformly randomly distributed
to all storage locations after a sufficiently large number of
accesses. In this section, we analyze the convergence rate

of the proposed scheme. Specifically, we are interested in
finding how many accesses are needed before every data
item become uniformly randomly distributed to all storage
locations. Apparently, different true access patterns may
result in different convergence rates. In this paper, we will
present the analysis of the convergence rate under one
particular access pattern, in which the user always requests
the same data item as its true target. The convergence
rates for more complicate access patterns are much more
difficult to analyze and we will investigate them in our
future work. Nevertheless, the analysis of convergence rate
we present in this paper will provide some insights about
how fast the proposed scheme converges.

In the following analysis, we model the user’s access
process as a Markovian process, denoted as MC-1.
Specifically, each state in MC-1 is a permutation of (d1, ··· ,
dn), which stands for one distribution of the n data items to
n storage locations. For simplicity, we assume that data
item d1 is the target data item in each access, i.e., DR = d1.
Note that because the location of DN does not change in
each access, the selection of DN does not affect the
distribution of data items’ storage locations. Hence, we
only consider the behavior of DR and DS in the following
analysis. Given the assumption that DR = d1 in each access,
then DSis selected uniformly at random from all the data
items, excluding d1 (see Section 3.2). In other words, DS
may be any data item from {d2, ···, dn} with equal
probability, which is 1/(n − 1).

5.1 Preliminaries
In literature, many methods have been proposed to

study the convergence rate of a Markovian process [31-33].
Our analysis of the convergence rate is based on the
relation between the convergence rate and the second
largest eigenvalue of the transition matrix. Specifically,
our analysis of MC-1’s convergence rate is based on the
following fact.

Theorem 5.1: Given a Markovian process with initial
state vector α0 = {α0,1, α0,2, ···, α0,n}, the state vector after
m steps αm = {αm,1, αm,2, ···, αm,n} and the steady state
vector π = {π1, ···, πn}, it has

 , 2(),m

j E m j jsup Oa p lÎ - = (1)

where E = {1, ··· , n}, and λ2 < 1 is the second largest
eigenvalue of the transition matrix.

Eq. (1) implies that, for a Markovian process, the
convergence rate from an arbitrary initial state to the
steady state is upper-bounded by the rate that |λ2|m
approaches zero, where m is the number of steps. For
example, suppose the system requires that supjÎE|αm,j − πj|
≤ ε, where ε> 0. If we let

 2 ,mc l e£ (2)

which is equivalent to

2 2 2
log log (log),m c Ol l le e³ - = (3)

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

290

then we will get supjÎE|αm,j − πj| ≤ ε after O(logλ2ε) steps. In
our following analysis, we will firstly find λ2 for the
transition matrix of MC-1. Then we find an upper-bound
for the convergence rate of MC-1 based on the value of λ2.

5.2 The Transition Matrix of MC-1
Denote each state of MC-1 as σi (i = 1, ··· , n!), which

stands for one distribution of the n data items to n storage
locations. Then according to the scheme, the transition
function g(σi, σj) from a state σi to another state σj is
defined as following:
• g(σi, σj) = 1/2, if σi= σj, which means that each data

item’s storage location does not change after one
access. This situation is resulted from DR and DSnot
swapping their locations at the end of the access. Note
that DR= d1 and there are n − 1 possible choices of DS
and the probability of swapping is 1/2, thus g(σi, σj) =
1 1
2 1n

×
-

·(n − 1) = 1/2.

• g(σi, σj) = 1 ,
2(1)n -

 if σi and σj differs only in d1’s

location and one of the rest of data items location.
Inthis case, it means that DR and DS swap their
locations at the end of the access. For example,
suppose σi= (d1, d2, d3, ··· , dn) and σj= (d2, d1, d3, ··· ,
dn), then σi may transit to σj if d2 is selected as the first
dummy data item and d1 and d2 swap their locations at
the end of the access.
• Otherwise, g(σi, σj) = 0. For example, suppose σi = (d2,

d3, d1, d4, ··· , dn) and σj = (d3, d2, d1, d4, ··· , dn), then
f(σi, σj) = 0, because there is no way that d3 and d2
swap their locations in one access while d1 is the true
target.

Note that in the proposed scheme, transitions between
two states are symmetric, i.e., g(σi, σj) = g(σj, σi).

As an example, let n = 3, thus there are in total 3! = 6
states in MC-1. Note that in practice, if n = 3, our scheme
will always retrieve the whole database. However, without
loss of generality, we use n = 3 to simplify the presentation.
Fig. 4 shows the transition matrix for this process, from
which we can get the transition probability between
different states. For example, Fig. 4 reads that the
transition probability between states (1 2 3) and (2 1 3) is

1/4, which is 1 1 .
2 3 1

×
-

It is easy to calculate that, when n = 3, the transition
matrix has the second largest eigenvalue λ2 = 3/4.
Therefore, according to Eq. (1), the rate at which an
arbitrary state converges to the steady state is upper-

bounded by the rate at which 3
4

m
æ ö
ç ÷
è ø

 approaches zero as m

(the number of accesses) increases. As afore-explained in
Section 5.1, we will get supjÎE|αm,j − πj| ≤ ε, where ε > 0,

after 3
4

logO e
æ ö
ç ÷
è ø

 steps (i.e., data accesses). For example, if

we let ε = 1/nc, the process will converge in 3
4

1log cO
n

æ ö
ç ÷
è ø

 =

3
4

logO c n
æ ö
ç ÷
è ø

 = (log)O n steps.

5.3 The 2nd Largest Eigenvalue of MC-1
Before we present the analysis of the second largest

eigenvalue of the transition matrix, we describe how we
organize the transition matrix to simplify the proof.
Apparently, the order in which different states appear in
the rows and columns of the transition matrix affects the
representation of the transition matrix. In the following, we
describe our way of organizing the transition matrix, by
explaining how to get the transition matrix for a system of
n + 1 data items (denoted as Πn+1) based on the transition
matrix of n data items (denoted as Πn). Specifically, Πn+1
can be considered as the addition of two matrices, namely,
matrix Πn+1,A which is derived from Πn, and matrix Πn+1,B.
Fig. 5 shows a high-level illustration of these two matrices.
Specifically:
• In Πn+1,A(as shown in Fig. 5(a)), the sub-matrices

corresponding to states from the same groups are the

same as Πn multiplying 1.n
n
- The rest of the entries

in Πn+1,A are all zero.
• In Πn+1,B(as shown in Fig. 5(b)), the diagonal entries

are all 1 .
2n

 In addition, for each row/column, there is

only one non-zero entry besides the diagonal entry,

which is also 1 .
2n

We claim that the second largest eigenvalue, λ2, for the

transition matrix that we described previously is 1 −
1 ,

2(1)n -
 where n is the number of data items. The rest of

this section presents the proof of this claim. We firstly

prove in Section 5.3.1 that 1 − 1
2(1)n -

 is one of the

Fig. 4. Example transition probabilities between states
when n = 3. Each parenthesized sequence of numbers
represents a distribution of data items to different
locations. For example, (1 2 3) denotes that data item
d1, d2, and d3 are stored in locations 1, 2, and 3
respectively.

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

291

eigenvalues for the transition matrix with n data items. We

then show in Section 5.3.2 that 1 − 1
2(1)n -

 is indeed the

second largest eigenvalue of the transition matrix.

5.3.1 Eigenvalues of the Transition Matrix
Theorem 5.2: For a system with n data items, the afore-

described transition matrix of MC-1 has one of its

eigenvalues λn as 1 − 1 ,
2(1)n -

 with one of its

corresponding eigenvector Vn as the following:

{ }

{ }{ }11

0,1,0,1, 1, 1 , = 3

, , > 3nn

if n

if n--

ì
- -ïï= í

ï
ïî 1 0

n

n

V
V -

 (4)

where {Vn−1}n−1 is the concatenation of n − 1 copies of
Vn−1, and 0n−1 is an ((n − 1)!)-entry zero vector.

Proof: We prove the theorem by induction. Let
Πndenote the transition matrix of interest. Generally, for an
eigenvalue λn with its eigenvector Vn, we have

 () ,n n nIlÕ - = 0n nV (5)

where In stands for the (n!) × (n!) identity matrix and 0n is

an (n!)-entry zero vector.
It is easy to verify that when n = 3, {0, 1, 0, 1, −1, −1}

is an eigenvector with eigenvalue 3/4 for the matrix shown
in Fig. 4. In the following, we will show that Vn = {{Vn−1}n

−1, 0n−1} when n> 3.
Suppose Vn is an eigenvector in the format of Eq. (4),

with eigenvalue λn = 1 − 1
2(1)n -

. As afore-explained,

 1 1, 1, .n n A n B+ + +Õ = Õ + Õ (6)

Given that λn = 1 − 1
2(1)n -

 and λn+1 = 1 − 1
2n

,

therefore,

1 1 1

1, 1 1, 1

1, 1 1, 1

()

1 1

1 1 .

n n n

n A n n n B n

n A n n n B n

I

n I I
n n

n I I
n n

l

l

l

+ + +

+ + + +

+ + + +

Õ -

æ - öæ ö æ ö= Õ - + Õ -ç ÷ç ÷ ç ÷
è ø è øè ø

-æ ö æ ö= Õ - + Õ -ç ÷ ç ÷
è ø è ø

+1

+1

+1 +1

n

n

n n

V

V

V V

 (7)

Based on the relation between Πn+1,A and Πn (as shown

in Fig. 5(a)), and given that Eq. (5) holds and Vn+1 =
{{Vn}n, 0n}, it is easy to see that the first item of Eq. (7) is
equal to 0n+1, i.e.,

 1, 1
1() .n A n n

n I
n

l+ + +

-
Õ - =1 10n+ nV (8)

Now we show that the second item of Eq. (7), i.e.,

(Πn+1,B – 1
n

In+1) Vn+1, is also equal to 0n+1. Let Π′n+1,B =

(Πn+1,B – 1
n

In+1). From Fig. 5(b), we can see that Π′n+1,B

differs from Πn+1,B only in the diagonal entries: diagonal

entries in Π′n+1,B are 1
2n

- whereas diagonal entries in

Πn+1,B are 1
2n

. Because each row of Π′n+1,B only has two

non-zero entries, we observe the following facts when
scalar-multiplying each row of Π′n+1,B with Vn+1: the
diagonal entry and the other non-zero entry are multiplying
the same value, either 0, 1 or -1. Specifically,
• If the diagonal entry is multiplying 0, the other non-

zero entry of this row is also multiplying 0.
• If the diagonal entry is multiplying 1, the other non-

zero entry of this row is also multiplying 1.
• If the diagonal entry is multiplying -1, the other non-

zero entry of this row is also multiplying -1.

As a result, the scalar multiplication of each row of

Π′n+1,B and Vn+1 is 0, which means that

 1, 1
1() .n B nI
n+ + + +Õ - =1 10n nV (9)

(a) Πn+1,A

(b) Πn+1,B

Fig. 5. Illustration of Πn+1,A and Πn+1,B.

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

292

Therefore, Eq. (7) is equal to 0n+1. As a result, λn+1 = 1

− 1
2n

 is an eigenvalue for Πn+1 and its eigenvector Vn+1 =

{{Vn}n, 0n}. □

5.3.2 The 2nd Largest Eigenvalue

Theorem 5.3: If λ′ >1 − 1
2(1)n -

 is an eigenvalue for

the afore-described transition matrix of MC-1 with n data
items, then λ′ = 1.

Proof Sketch: We will also use induction to prove the
theorem. Due to space limitation, we only present a sketch
of the proof. Please refer to [21] for details.

Firstly, as shown in Section 5.2, when n = 3, the only

eigenvalue that is greater than 1 − 1
2(1)n -

= 3
4

 is 1.

Now assume λn = 1 − 1
2(1)n -

 is the second largest

eigenvalue for Πn, while there exists ε> 0 such that λ′n+1 =

1 − 1
2n

 + ε is the second largest eigenvalue (i.e., λ′n+1< 1)

for Πn+1. Denote one of its corresponding eigenvectors as

 { }1 2, , , ,mv v v+¢ =1 LnV (10)

where m = (n + 1)!. Therefore, we have

 1 1 1() ,n n nIl+ + + + +¢ ¢Õ - =1 10n nV (11)

which is equivalent to

1 1 1

1, 1 1, 1

()
1 1(()) ()

.

n n n

n A n n n B n

I
n ' I I

n n

l

l e

+ + + +

+ + + + + +

+

¢ ¢Õ -

- ¢ ¢= Õ - + + Õ -

=

1

1 1

10

n

n n

n

V

V V

 (12)

We have shown in [21] that in the second item of the

above equation, i.e., (Πn+1,B – 1
n

In+1) V'n+1, there is one

group whose summation is 0n. Given that the overall
summation equals 0n+1, there must be one group in (Πn+1,A

– 1n
n
- (λn+ ε')In+1)V'n+1, whose result is also 0n. This mean

that there exists an eigenvalue λn = 1 − 1
2(1)n -

 + ε' for

Πn, which contradicts to our assumption. □

5.4 Analysis of the Convergence Rate
Now given the second largest eigenvalue of the

transition matrix, we now can analyze the convergence rate
of MC-1 based on Theorem 5.1. Specifically, suppose we
define convergence as

 , 2 2() ,m m
j E m j jsup O c n ea p l l -
Î - = = < (13)

where c is a constant, ε> 0 is a benchmark for convergence,
and n is the number of data items. On the other hand,

2(1) 2(1) 2(1)1 1 11 1 .

2(1) 2(1)

m mm n n n

n n e

- -
-æ öæ ö æ ö æ öç ÷- = - £ç ÷ ç ÷ ç ÷ç ÷- - è øè ø è øè ø

 (14)

Let m = t × 2(n − 1), then

 1 11 .
2(1)

m t

n e
æ ö æ ö- £ç ÷ ç ÷- è øè ø

 (15)

As a result, MC-1 converges if we have

 1 ,
t

c n
e

e-æ ö <ç ÷
è ø

 (16)

which is equivalent to

 ln ln .t n ce> + (17)

Therefore, to converge, m need to satisfy the following

 2(1) (ln ln) 2(1) (ln).m t n n c n O n ne e= ´ - > + ´ - =
 (18)

Thus, it takes O(εn ln n) steps for MC-1 to converge. In

other words, the user need to make O(εn ln n) accesses
before the access appears to be uniformly at random.

6. Performance Evaluation

6.1 Evaluation Setup
To evaluate the performance of the proposed scheme,

we have collected two user access traces from two popular
cloud service providers: YouTube [22] and Baidu [23]. As
shown in Figs. 6(a) and (b), both the YouTube user and the
Baidu user have 256 files stored at the server. Different
files have been accessed with different frequencies over
time. Moreover, we have created an additional user who
always requests the same file from the server, called the
SFA (Single File Access) user, as shown in Fig. 6(c). We
use the SFA user to emulate an extreme access pattern.
The total number of files for the SFA user is also 256.

6.2 Access Frequency Privacy
To study how well our proposed scheme preserves a

cloud user’s access frequency privacy, we propose to use
entropy to measure the distribution of the user’s access
frequencies to different files. Specifically, let Ci denote the
number of accesses to the file stored at storage location i.

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013

293

Then, the access frequency to location i is Fi = ,i

j j

c
cå

 and

the entropy of access frequency is HF = −åiFi log(Fi). For
example, HF of the YouTube and Baidu traces is around
7.6 and 6.5, respectively, which can be calculated by
counting the number of accesses to each file in Figs. 6(a)
and (b). Clearly, for a given set of files stored at the server,
the maximum entropy is achieved when all file locations
have been accessed with an equal probability. This means
that, the maximum entropy for accessing 256 files is max

FH

(256) = −256 × 1 1log
256 256

æ ö
ç ÷
è ø

 = 8.

We evaluate how the entropy of access frequency
changes as the number of access rounds increases. Fig. 7
plots the results (averaged over 100 simulation runs) for
different access scenarios. It can be seen clearly from the
figures that, with our scheme, the entropy of access
frequency improves over the original trace, and converges
gradually to the maximum entropy in all simulated
scenarios. This confirms our analytical study in Section 4
and Theorem 4.2 that the access frequency distribution
converges towards the uniform distribution in the long run.

6.3 Data Item’s Location Privacy
As discussed in Section 4, when the user employs our

proposed scheme, the cloud server loses track of a certain
data item gradually over time. In other words, from the
server’s perspective, the uncertainty of a data item’s
storage location increases gradually over time. Similar to
the evaluation of access frequency privacy, we also use
entropy to measure the uncertainty of a particular data

item’s location from the server’s perspective. It is defined
as HL = −åipi log(pi), where piis the probability that the
data item is at location i from the server’s perspective. We
evaluate how the entropy of the data item’s location
distribution grows as the number of access rounds
increases. For each access scenario, we collect the
statistics of the most accessed data item and the least
accessed data item, and results (averaged over 100
simulation runs) are plotted in Figs. 8(a) and (b),
respectively. From the figures, we can see that a data
item’s location distribution entropy reaches the maximum
regardless of their real access frequency. Note that,
without our proposed scheme, a data item’s location
distribution entropy is zero because its location is fixed
and known to the server. Also note that based on the
analysis in Section 5, the convergence rate for SFA is O(εn
ln n) = O(ε · 256 ln 256) ≈ O(1400ε). From Fig. 8(a), we
can see the curve for SFA converges to max entropy after
around 1500 steps, which confirms our analysis of the
convergence rate in Section 5.

7. Overhead Analysis

7.1 Communication and Computational
Overhead

With our proposed scheme, to access a single data item,
the cloud user needs to obtain the following information
from the cloud server:
• Three index files at each level of the storage

hierarchy; each index file records the storage locations
of m index files at its next lower level and it takes log

(a) YouTube (b) Baidu (c) SFA

Fig. 6. Data access traces and distribution used in the performance evaluation.

(a) YouTube (b) Baidu (c) SFA

Fig. 7. The entropy of access frequency vs. the number of access rounds for a particular simulation run under
different access scenarios. In (c), because the SFA user always requests the same data item at each round, the
entropy of access frequency without using our proposed scheme is always zero, which is not shown in the figure.

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage

294

n bits to represent a storage location.
• Three index files at each level of the storage

hierarchy; each index file records the storage locations
of m index files at its next lower level and it takes log
n bits to represent a storage location.
• One access history file at each level of the storage

hierarchy; each access history file records the IDs and
storage locations of three index files (at this level) that
were accessed in the previous round; hence, it
contains six fields and each field is log n-bit long.
• The desired data item and two dummy data items; let τ

denote the size of each data item in bits.

Recall that there is a total of logm n levels in our

proposed hierarchical storage structure. Therefore, the
overall communication and computational overhead for
accessing a single data item can be calculated as:

 &OH log 3log 6log log 3 .c c m mm n n n n t= × + × + (19)

It is easy to verify that:

()2

& & 4

& &

min OH OH 9 log 3 ;

max OH OH (3 6) log 3 .
c c c c m

c c c c m n

n

n n

t

t
=

=

ì = = +ï
í

= = + +ïî
 (20)

7.2 Storage Overhead
As explained in Section 3.1, the total number of index

files in our proposed scheme is 1 .
1

n
m

-
-

 Each index file

recordsthe storage locations of m index files at its next
lower level and it takes log n bits to represent a storage
location. Therefore, the overall storage overhead at the
cloud server can be calculated as:

 s_server
1OH log .
1

nm n n
m

t-
= × +

-
 (21)

It is easy to verify that:

s_server s_server

s_server s_server 2

min OH OH log ;

max OH OH 2(1) log .
m n

m

n n n

n n n

t

t
=

=

ì = = +ï
í

= = - +ïî
 (22)

At the user side, to operate our proposed scheme, the
cloud user needs to store one access history file, three
index files, and three more index files or data items at any
given time. Thus the required storage at the user side is:

 s_userOH 6log 3 log max{3 log , 3 }.n m n m n t= + + (23)

7.3 Overhead Comparison
Based on the above overhead analysis, we set m = 4 in

our scheme. In Table 2, we compare our scheme with one
of the state-of-the-art access pattern preservation schemes
for single-cloud-server systems [16].

Table 2. Overhead Comparison

 Our Scheme (m=4) Scheme in [16]

Comm./Comp O((log n)2 + τ) O(log n · τ)

Storage (server) O(n max{log n, τ}) O(n · τ)

Storage (user) O(max{log n, τ}) O(n · τ)

In practical cloud storage applications, the size of a

data item (τ, in bits) is usually larger than log n bits, where
n is the total number of data items. E.g., [16] proposes the
data item size to be 64 KB, i.e., 216 bits. It is generally
impractical for a user to have more than

1622 data items.
Under this assumption, it is interesting to see that our
scheme is more efficient. Specifically, our scheme (i)
consumes similar storage space at the cloud server; (ii)
usually incurs significantly less communication and
computational overhead; and (iii) requires significantly
less storage space at the cloud user, which facilitates the
employment of our proposed scheme on thin user devices
such as mobile phones. Note that the better efficiency
performance of our scheme is achieved under a less
stringent privacy requirement than [16]; instead of
requiring strict privacy protection to the data access pattern,
our scheme aims to protect the privacy of the data access
pattern in the long run.

8. Related Work

Although many schemes [4, 5, 24] have been proposed

(a) (b)

Fig. 8. (a) Average entropy of location distribution vs. the number of access rounds for the most frequently
requested data item, (b) Average entropy of location distribution vs. the number of access rounds for the least
frequently requested data item.

IEEK Transactions on Smart Processing and Computing, vol. 2, no. 5, October 2013 295

to protect data confidentiality and data integrity for the
cloud computing paradigm, little effort has been made to
protect users’ access pattern privacy. Private Information
Retrieval (PIR) [9, 25, 26], Oblivious RAM [10-19] and
Steganographic File Systems (SFS) [27-29] are the works
most related to our solution.

Private Information Retrieval: PIR schemes aim to
allow clients to retrieve information from a database while
maintaining the privacy of the queries to the database.
Fully implementing the PIR notion is, however, expensive.
As shown by Sion et al. [9], deployment of any single-
server PIR protocol is not necessarily more efficient than a
simple transfer of the entire database due to computational
costs. On the other hand, PIR schemes typically do not
address data confidentiality, which makes PIR schemes
unsuitable to be applied in the un-trusted cloud
environments.

Oblivious RAM: In order to prevent the users’ access
pattern from being revealed, Oblivious RAM (ORAM)
[10-19] has been proposed. In a latest version of ORAM,
Stefanov et al. [16] proposed a framework for practical
ORAM that significantly reduces the communication
overhead in practical scenarios (e.g., 220<n< 235, where n is
the number of data items). In Section 7, we have shown
that our scheme is much more efficient in terms
communication, computational and storage overheads in
practical cloud storage applications under a less stringent
privacy requirement.

Steganographic File Systems: Research efforts on
steganographic file systems [27-29] are also related to our
proposed design. The major differences lie in that, the
research on SFS targets at protecting the information about
existence and/or locations of sensitive files through hiding
both short-term and long-term access patterns, while our
proposal mainly targets at protecting long-term access
pattern at low cost.

There is a concurrent effort [30] that addresses a
similar problem as the one in our work. Their solution and
ours share similar high-level ideas such as usage of
dummies, hierarchical storage structure and file reshuffling.
However, there are several key differences between the
two solutions. E.g., our solution yields provable security
and overhead performances and does not require user-side
LRU cache or an empirical statistical access model.

9. Conclusions and Future Work

In this paper, we present a lightweight solution to the
preservation data access pattern privacy in un-trusted
storage. Rigorous proofs have been provided to show that
the proposed scheme can provide full protection to data
access pattern privacy in the long run. Detailed analysis
and extensive evaluations have also been conducted to
show that the scheme can protect the data access pattern
privacy effectively after a reasonable number of accesses
have been made. In the future work, we plan to enhance
the scheme such that it can support private and efficient
data updates, including data changes, data insertions and
data deletions.

Acknowledgement

The research reported in this paper was supported in
part by the Information Infrastructure Institute (iCube) of
Iowa State University, the Security and Software
Engineering Research Center (S2ERC), the National
Science Foundation under Grants CNS 0831874 and CNS
0716744, and the office of Naval Research under Grant
N000140910748.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia, “Above the clouds:
A Berkeley view of cloud computing” Tech. Rep.
UCB-EECS, 2009. Article (CrossRef Link)

[2] P. Mell and T. Grance, “Draft: Nist working
definition of cloud computing” 2010. Article
(CrossRef Link)

[3] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh, “Terra: A virtual machine-based platform
for trusted computing” in Proc. SOSP, 2003. Article
(CrossRef Link)

[4] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring
data storage security in cloud computing” in Proc.
IWQoS, 2009. Article (CrossRef Link)

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving
secure, scalable, and fine-grained access control in
cloud computing” in Proc. INFOCOM, 2010. Article
(CrossRef Link)

[6] B. Chor and N. Gilboa, “Computationally private
information retrieval” in Proc. STOC, 1997. Article
(CrossRef Link)

[7] R. Ostrovsky and V. Shoup, “Private information
storage” in Proc. STOC, 1997. Article (CrossRef
Link)

[8] G. Itkis, “Personal communication, via oded
goldreich” 1996.

[9] R. Sion and B. Carbunar, “On the computational
practicality of private information retrieval” in Proc.
NDSS, 2007. Article (CrossRef Link)

[10] O. Goldreich and R. Ostrovsky, “Software protection
and simulation on oblivious RAM” in JACM, 1996.
Article (CrossRef Link)

[11] P. Williams, R. Sion, and B. Carbunar, “Building
castles out of mud: practical access pattern privacy
and correctness on untrusted storage” in Proc. CCS,
2008. Article (CrossRef Link)

[12] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li,
“Oblivious RAM with O((log n)3) worst-case cost,”
in Proc. ASIACRYPT, 2011. Article (CrossRef Link)

[13] M. T. Goodrich and M. Mitzenmacher, “Privacy-
preserving access of outsourced data via oblivious
RAM simulation” in Proc. ICALP, 2011. Article
(CrossRef Link)

[14] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia, “Oblivious RAM simulation with
efficient worst-case access overhead,” in Proc.
CCSW, 2011. Article (CrossRef Link)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.2679
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.2679
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5201385
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462174&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5462174
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462174&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5462174
http://dl.acm.org/citation.cfm?id=258609
http://dl.acm.org/citation.cfm?id=258609
http://dl.acm.org/citation.cfm?id=258606
http://dl.acm.org/citation.cfm?id=258606
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.793
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.8961
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.300
http://link.springer.com/chapter/10.1007%2F978-3-642-25385-0_11#page-1
http://link.springer.com/chapter/10.1007%2F978-3-642-22012-8_46#page-1
http://link.springer.com/chapter/10.1007%2F978-3-642-22012-8_46#page-1
http://dl.acm.org/citation.cfm?id=2046680

Yang et al.: Light-weight Preservation of Access Pattern Privacy in Un-trusted Storage 296

[15] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the
(in)security of hash-based oblivious RAM and a new
balancing scheme” in Proc. SODA, 2012. Article
(CrossRef Link)

[16] E. Stefanov, E. Shi, and D. Song, “Towards practical
oblivious RAM” in Proc. NDSS, 2012. Article
(CrossRef Link)

[17] P. Williams and R. Sion, “Privatefs: A parallel
oblivious file system” in Proc. CCS, 2012. Article
(CrossRef Link)

[18] P. Williams and R. Sion, “Single round access
privacy on outsourced storage” in Proc. CCS, 2012.
Article (CrossRef Link)

[19] E. Stefanov and E. Shi, “Oblivistore: High
performance oblivious cloud storage” in Proc. S&P,
2013. Article (CrossRef Link)

[20] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone, Handbook of Applied Cryptography. CRC
Press, 1996. Article (CrossRef Link)

[21] K. Yang, J. Zhang, W. Zhang, and D. Qiao, “A
lightweight solution to preservation of access pattern
privacy in un-trusted clouds” Technical Report, 2012.
[Online]. Available: Article (CrossRef Link)

[22] Youtube.[Online].Available: Article (CrossRef Link)
[23] Baidu. [Online]. Available: Article (CrossRef Link)
[24] C. Wang, Q. Wang, K. Ren, and W. Lou, “Secure

ranked keyword search over encrypted cloud data” in
Proc. ICDCS, 2010. Article (CrossRef Link)

[25] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan,
“Private information retrieval” in Proc. FOCS, 1998.
Article (CrossRef Link)

[26] E. Kushilevitz and R. Ostrovsky, “Replication is not
needed: Single database, computationally-private
information retrieval” in Proc. IEEE Symposium on
Foundations of Computer Science, 1997. Article
(CrossRef Link)

[27] X. Zhou, H. Pang, and K.-L. Tan, “Hiding data
accesses in steganographic file system” in Proc.
ICDE’04, 2004. Article (CrossRef Link)

[28] C. Troncoso, C. Diaz, O. Dunkelman, and B. Preneel,
“Traffic analysis attacks on a continuously-
observable steganographic file system” in Proc.
Information Hiding, 2007. Article (CrossRef Link)

[29] C. Diaz, C. Troncoso, and B. Preneel, “A framework
for the analysis of mix-based steganographic file
systems” in Proc. ESORICS, 2008. Article (CrossRef
Link)

[30] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
G. Pelosi, and P. Samarati, “Efficient and private
access to outsourced data” in Proc. ICDCS, 2011.
Article (CrossRef Link)

[31] Sean P. Meyn, and Robert L. Tweedie, “Computable
bounds for geometric convergence rates of Markov
chains" in The Annals of Applied Probability, Vol. 4,
No. 4, 1994. Article (CrossRef Link)

[32] Jeffrey S. Rosenthal, “Convergence rate for Markov
chains” in SIAM Review, Vol. 37, No. 3, 1995.
Article (CrossRef Link)

[33] S. F. Jarner, and G. O. Roberts, “Polynomial

convergence rates of Markov chains” in The Annals
of Applied Probability, Vol. 12, No. 1, 2002. Article
(CrossRef Link)

[34] K. Yang, J. Zhang, W. Zhang, and D. Qiao, “A light-
weight solution to preservation of access pattern
privacy in un-trusted clouds” in Proc. ESORICS,
2011. Article (CrossRef Link)

Ka Yang received his B.S. degree in
Electrical Engineering in 2007 from
Harbin Institute of Technology,
Harbin, China. He is currently a Ph.D.
candidate in the Department of
Electrical and Computer Engineering
at Iowa State University, Ames, Iowa.
His current research includes data
privacy, cloud computing and

pervasive computing applications.

Jinsheng Zhang received his B.S.
degree in Information Security in
University of Science and Technology
of China (USTC), China, in 2010.
Since then, he joined Department of
Computer Science at Iowa State
University, Ames, Iowa. Currently, he
is a graduate student pursuing his Ph.D.

degree in Iowa State University. His research interests
include cloud computing, cloud storage, data outsourcing,
security and privacy.

Wensheng Zhang received the B.S.
degree from Tongji University,
Shanghai, the M.S. degree fromthe
Chinese Academy of Sciences, Beijing,
and the Ph.D. from Pennsylvania State
University, all incomputer science and
engineering. Since 2005, hehas been a
faculty member with the Department

of Computer Science at Iowa State University,wherehe is
now an Associate Professor. His researchinterests include
networks and distributed systems.

Daji Qiao received the Ph.D. degree in
Electrical Engineering: Systems from
the University of Michigan, Ann Arbor,
in February 2004. He is currently an
Associate Professor in the Department
of Electrical and Computer
Engineering, Iowa State University,
Ames, Iowa, USA. His current

research interests include cyber security and cloud
computing, protocol and algorithm innovation for IEEE
802.11 wireless local area networks and wireless
sensor networks, and pervasive computing applications.
He is a member of the IEEE and ACM. Copyrights © 2013 The Institute of Electronics Engineers of Korea

http://dl.acm.org/citation.cfm?id=2095129
http://dl.acm.org/citation.cfm?id=2095129
http://arxiv.org/pdf/1106.3652.pdf
http://arxiv.org/pdf/1106.3652.pdf
http://dl.acm.org/citation.cfm?id=2382299&dl=ACM&coll=DL&CFID=387794424&CFTOKEN=92208177
http://dl.acm.org/citation.cfm?id=2382299&dl=ACM&coll=DL&CFID=387794424&CFTOKEN=92208177
http://dl.acm.org/citation.cfm?id=2382229
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6547114&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6547114
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.2838&rep=rep1&type=pdf
http://www.public.iastate.edu/%7Eyangka/PatternFull.pdf
http://www.youtube.com/user/supercwm
http://passport.baidu.com/ ?business&aid=6&un=chenfoxlord#7
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5541682&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5541682
http://people.csail.mit.edu/madhu/papers/1995/pir-journ.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=646125&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D646125
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=646125&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D646125
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1320028&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1320028
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.1055
http://link.springer.com/chapter/10.1007%2F978-3-540-88313-5_28#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-88313-5_28#page-1
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5961723&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5961723
http://www.jstor.org/discover/10.2307/2245077?uid=3739560&uid=2&uid=4&uid=3739256&sid=21103192309213
http://epubs.siam.org/doi/abs/10.1137/1037083?journalCode=siread
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoap/1015961162
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoap/1015961162
http://link.springer.com/chapter/10.1007%2F978-3-642-23822-2_29

