
Joint Aggregation and MAC Design to Prolong

Sensor Network Lifetime

Zi Li, Yang Peng, Daji Qiao, and Wensheng Zhang

Iowa State University, Ames, IA, USA

Email: {zili, yangpeng, daji, wzhang}@iastate.edu

Abstract—This paper proposes JAM, a Joint Aggregation and

MAC design, to improve the sensor network lifetime under

the end-to-end delay constraint. The key idea is to adjust

both network traffic (via data aggregation) and communication

overhead (via duty-cycled MAC) in a holistic manner at each

individual node as well as between neighbors. As a result,

JAM extends the sensor network lifetime more efficiently and

effectively than the state-of-the-art solutions while guaranteeing

the desired delay bound and achieving a lower level of average

nodal power consumption. JAM is a lightweight and distributed

solution with limited control information exchanged between

neighbors only, which makes it deployable in practical sensor

networks. Extensive ns-2 simulation and TinyOS experiment

results are used to demonstrate the effectiveness of JAM in

prolonging the network lifetime.

I. INTRODUCTION

A. Motivation

Extending the lifetime of sensor networks is critically

important when the networks are deployed for long-term

monitoring applications. Besides duty cycling, balancing nodal

lifetime is another major approach for network lifetime ex-

tension, because the network lifetime is often defined as the

minimal nodal lifetime among all nodes in the network [1]–

[3]. Following this approach, a variety of duty-cycled MAC

protocols [4]–[6] and data aggregation schemes [7], [8] have

been proposed recently.

Duty-cycled sensor networks rely on MAC protocols to

establish rendezvous between sender and receiver nodes. The

incurred MAC-layer communication overhead is distributed

between sender and receiver in different manners with dif-

ferent MAC protocols. To balance nodal lifetime, the authors

of [4]–[6] proposed to adapt the distribution of communication

overhead among neighbors according to their nodal lifetime,

i.e., longer-lifetime nodes shall absorb more communication

overhead than their shorter-lifetime neighbors.

Through eliminating inherent redundancy in raw sensory

data, in-network data aggregation [9], [10] can effectively

reduce network traffic. For the sake of aggregation, a node

needs to hold data (received or self-generated) for a while.

Clearly, a node can suppress more data traffic with a longer

holding time. However, holding data introduces extra delay,

and the value of sensory data could be greatly depreciated

if the data is delivered to the sink with a delay longer

than an application-specified delay bound. To balance nodal

lifetime while maintaining a required end-to-end delay bound,

the authors of [7], [8] proposed to adapt the distribution of

holding time among nodes along the same route according to

their nodal lifetime; i.e., shorter-lifetime nodes shall hold data

longer to reduce its outgoing data traffic while longer-lifetime

nodes shall hold data for a shorter time so that the end-to-end

delay requirement is still guaranteed.

As the aforementioned MAC and data aggregation schemes

improve the network lifetime from two distinct perspectives,

it is naturally an attractive idea to explore the possibility of a

joint design of MAC and data aggregation to further improve

the network lifetime. This, however, is a challenging task due

to the following reasons. Firstly, most of the MAC protocols

were designed without explicitly considering the end-to-end

delay requirement. As a result, they may yield uncontrol-

lable end-to-end delay under certain practical scenarios; this

is unacceptable for data aggregation applications that often

require a stringent end-to-end delay bound. Secondly, even if

there exists a MAC protocol that can provide a certain delay

guarantee, when it works with a data aggregation scheme,

it is non-trivial to decide how to divide the allowed end-

to-end delay into two parts to serve as the delay constraints

respectively for the MAC and data aggregation protocols, such

that the maximum lifetime improvement can be accomplished.

Therefore, it is important to develop an innovative approach

to integrate MAC and data aggregation protocols together via

a joint adjustment of their protocol parameters.

B. Related Work

Research has been conducted on designing duty-cycled

MAC protocols and energy-efficient or lifetime-extending data

aggregation schemes. However, there is no research on jointly

adjusting data aggregation and MAC behaviors to extend the

sensor network lifetime.

Numerous MAC protocols [4]–[6], [11] have been proposed

to extend network lifetime through balancing nodal lifetime.

Particularly, SEESAW [4] balances the energy consumption

between sender and receiver through adapting the data retry

interval at the sender side and the channel checking period at

the receiver side. ZeroCal [6] targets at improving the fairness978-1-4799-1270-4/13/$31.00 c©2013 IEEE

of energy utilization in duty-cycled sensor networks by dynam-

ically tuning the nodal wakeup interval. GDSIC [5] decides the

individual nodal wakeup interval through solving distributed

convex optimization problems. Though the network lifetime

can be prolonged by these schemes, they do not consider the

end-to-end delay bound. pTunes [11] is a recently-proposed

centralized solution, which formulates a multi-objective op-

timization problem, where prolonging network lifetime and

guaranteeing the end-to-end delay can be solved together.

Most of existing data aggregation schemes [12]–[16] have

the objective of minimizing the total network energy consump-

tion instead of extending network lifetime, or do not consider

the end-to-end delay requirement. The problem of balancing

nodal lifetime under a delay constraint has been studied in [7],

[8]. Particularly, Becchetti et al. [8] investigated the problem

of energy-efficient data aggregation within a delay bound,

and proposed two distributed schemes to balance energy

consumption among sensor nodes. LBA [7] is a recently-

proposed lifetime-balancing aggregation protocol. Through

dynamically adjusting the aggregation holding time among

neighbors to balance their nodal lifetime, LBA provides a low

cost, asynchronous, and delay-constrained data aggregation

scheme for duty-cycled sensor networks.

C. Contributions

In this paper, we propose a novel holistic approach, called

JAM (Joint Aggregation and MAC), to jointly adjust MAC

and data aggregation behaviors to extend the sensor network

lifetime. The key idea of JAM is to coordinate the aggregation

and MAC behaviors at each individual node as well as between

neighbors, with the target of extending the minimal nodal

lifetime in the neighborhood. As such coordination occurs in

all neighborhoods, the network lifetime, i.e., the minimal nodal

lifetime among all nodes in the network, may be improved. As

JAM reduces both network traffic (via data aggregation) and

communication overhead (via duty-cycled MAC), it prolongs

the network lifetime more efficiently and effectively than

previous works that only use one of the two techniques. The

contributions of this work are summarized as follows.

• To the best of our knowledge, JAM is the first design

on integrating and jointly configuring MAC and data

aggregation protocols to extend the lifetime of duty-

cycled sensor networks.

• JAM is a distributed and lightweight solution. It works

through limited control information exchanged locally

between neighbors.

• JAM has been implemented and evaluated on a sensor

network testbed, and results show that it can achieve

significant improvement on network lifetime compared

to the state-of-the-art solutions.

D. Organization

The rest of the paper is organized as follows. Section II

presents the system models and problem statement. Details

of the JAM design and implementation are described in Sec-

tion III. Section IV shows the performance evaluation results

obtained from both ns-2 simulations and TinyOS testbed

experiments. Finally, Section 5 concludes the paper.

II. PROBLEM DESCRIPTION

A. System Models

We consider a sensor network deployed for monitoring ap-

plications where in-network data aggregation is allowed. Each

sensor node generates and reports sensory data periodically,

and all nodes form a data collection tree rooted at the sink.

Protocols like CTP (Collection Tree Protocol) [17] could be

used to build and maintain the data collection tree.

1) Aggregation Model: The total aggregation model [18]

is adopted, which allows an arbitrary number of data packets

generated and/or received at the same node to be suppressed

into a single data packet. Such a model is useful in many

sensor network applications, for example, when users are more

interested in the maximum, minimum, average, or percentile

statistics of sensory data, rather than the raw data themselves.

With this model, a source node may not send out a sensory

data packet immediately after it is generated. Instead, the

node may wait for a certain period of time (called the self-

aggregation delay (SAD)), and aggregates all data generated

during the period to reduce the amount of data traffic to its

parent node. Similarly, a forwarding node may not forward

a data packet immediately after reception; it may wait for

another period of time (called the forwarding-aggregation

delay (FAD)) and aggregate all packets received during the

period. Generally, the longer time a node waits for aggregation,

the more data traffic can be suppressed; at the same time, data

delivery latency is increased.

2) MAC Model: To conserve energy without time synchro-

nization overhead, it is desired to employ an asynchronous and

duty-cycled MAC protocol for long-term monitoring applica-

tions. The design principle of our proposed scheme does not

require a particular MAC protocol. Instead, our design works

compatibly with any asynchronous duty-cycled MAC protocol,

as long as the protocol allows a node’s duty cycle to be

adjusted dynamically. To simplify the presentation, however,

we assume each node runs an RI-MAC [19] like protocol as

shown in Figure 1.

In RI-MAC, each node wakes up every Tr interval to interact

with potential senders. Upon wakeup, it sends out a beacon and

then checks the channel activity for φ time. If a data packet is

received within φ, it replies with an ACK; otherwise, it goes

back to sleep. On the other hand, if a node has a data packet

to send, it remains awake and waits idly for the receiver’s

beacon to start data transmission. In the worst-case scenario,

the sender has to stay awake for Tr time before rendezvous

with the receiver, which incurs a transmission delay of Tr.

Different from the original RI-MAC protocol that has a fixed

Tr, we assume Tr is dynamically tunable. As can be observed,

a larger Tr reduces the receiver’s channel polling frequency

Sender

Receiver

Data Arrival

Tr

Data

A
C

K

B
e

a
c

o
n

Radio on

Radio on Radio off

Data

A
C

K

B
e

a
c

o
n

B
e

a
c

o
n

B
e
a

c
o

n

Fig. 1. An RI-MAC like protocol but with a tunable Tr parameter.

and hence its energy consumption; on the other hand, it

increases the sender’s energy consumption on idly waiting for

the beacon, and meanwhile increases the transmission delay

over the sender-to-receiver link.

3) Delay Model: Three types of delays are involved along

a source-to-sink path: (i) one SAD at the source node, (ii)

multiple FADs at the forwarding nodes, and (iii) multiple

transmission delays over the links. With the aggregation and

MAC models described above, to guarantee that the maximum

end-to-end packet delivery delay from any source node i to

the sink node is bounded by an application-specific parameter

D, we need to ensure that1

SAD(i) +
∑

m∈Si

(Tr(m) + FAD(m)) 6 D, (1)

where Si is the path from node i’s parent to sink. As larger

aggregation delays would allow more traffic to be aggregated

to save more energy, the delay bound shall be fully utilized

to maximize network lifetime, meaning that the equality shall

hold true in Inequality (1) in practical schemes.

B. Problem Statement

To effectively prolong the sensor network lifetime under

the end-to-end packet delivery delay constraint, it is critical

to have a holistic approach to adjust data aggregation and

MAC behaviors of all sensor nodes. Ideally, all sensor nodes

shall work together to maximize the minimum nodal lifetime

in the entire network. Unfortunately, this global objective is

impossible to accomplish in a realistic sensor network, as it

requires each node to know the residual energy levels and data

generation rates of all other nodes, and the topology of the

network, which are highly dynamic and often unpredictable

by nature. Instead, we study the following localized problem

for each sensor node i in the network:

1In practice, data or ACK packets may get lost due to collision, interference,
or deteriorated channel condition. As a result, the sensor node may need to
retransmit multiple times before the data packet can be delivered successfully.
This issue has been dealt with in JAM (as shown in Section III-F2) by
replacing Tr with ETX·Tr in Equations (1) and (2), where ETX is the expected
number of transmission attempts to deliver a data packet successfully over one
hop. To simplify the presentation, we set ETX = 1 during the explanation of
the JAM design in the next section, while the practical Equation (14) (given
in Section III-F2) is used in the actual JAM implementation.

Objective:

• max min
j∈{i}∪C(i)

L(j), where L(j) is j’s nodal lifetime and

its computation will be explained later in Section III-C.

C(i) is the set of i’s child nodes.

Subject to:

• SAD(i), FAD(i), Tr(i) > 0;

• End-to-End Delay Requirement:

SAD(i) +
∑

m∈Si

(Tr(m) + FAD(m)) = D. (2)

Output:

• i’s MAC protocol parameter: Tr(i);

• i’s data aggregation parameters: SAD(i) and FAD(i).

The goal of this problem is to maximize the minimal nodal

lifetime in i’s neighborhood. As such procedure occurs in

all neighborhoods, the minimal nodal lifetime in the entire

network, i.e., the network lifetime, may be improved gradually.

III. THE PROPOSED JAM SCHEME

In this section, we propose a protocol called JAM to address

the problem defined above. In JAM, coordination only occurs

between a sensor node and its child nodes, through exchanging

lightweight control information as well as adjusting their

aggregation and MAC behaviors together in a collaborative

manner. Figure 2 gives an overview of the JAM scheme. To

ease the presentation, we use the topology shown in Figure 3

as an example to explain the design details of JAM.

JAM consists of four modules: Aggregator, OREM (Output

Rate Estimation Module), LEM (Lifetime Estimation Module),

and ICCM (Intra-node Cross-layer Collaboration Module). In

Send Receive

Send

Data from

Children

ACK to

Children

Data to

Parent

ACK from

Parent

Data Generator

Data Path Control Path

Receive

ICCMOREM

LEM
JAM

Kernel

Control

Info

Parent

Info

Control

Info

Children

Info

Aggregator

Fig. 2. JAM Overview.

p i j k

Fig. 3. Topology used to describe JAM details.

general, when node i receives a data packet from its child

nodes or an ACK from its parent, it extracts the control

information embedded in the packet and feeds them into JAM

kernel. Here, the control information needed by JAM kernel

includes five items from each child node j of i: e(j), λ(j),

SAD(j), the delay introduced at node j: D(j) = FAD(j) +
Tr(j), and j’s own input data rate

∑

k∈C(j) µ(k) where µ(k)

is the output data rate of a child node k of j; and two items

from parent node p of i: Tr(p) and θ(p). We will explain the

meaning of θ in Section III-E. With these information, JAM

kernel decides how node i shall adjust its MAC behavior (i.e.,

Tr) and aggregation behavior (i.e., SAD and FAD) to improve

the minimal nodal lifetime in its neighborhood. The decision

is then piggybacked into the ACK packet to its child nodes.

Upon being notified, each child node adjusts its MAC and

aggregation behaviors.

A. Aggregator Module

The aggregator module controls the nodal aggregation be-

havior. Specifically, it works as follows at node i:

Case I:
1

∑

j∈C(i) µ(j)
6 FAD(i) 6 SAD(i). In this case,

node i has a data packet arrival rate no lower than 1/FAD(i)
and 1/SAD(i). A timer is fired every FAD(i) interval. When it

fires, all data packets received and self-generated since its last

firing are aggregated into a single packet, and then forwarded

to the parent node. This way, we ensure that packets received

from i’s child nodes are held for no longer than FAD(i) time.

Also, since the self-generated data packets are aggregated and

forwarded every FAD(i) time, which is always smaller than

SAD(i) in JAM, their delay requirement is guaranteed as

well. We will prove FAD(i) 6 SAD(i) for any node i in

Section III-B.

Case II:
1

∑

j∈C(i) µ(j)
> FAD(i) and

1

λ(i)
6 SAD(i). In

this case, data packets from child nodes arrive at a rate lower

than 1/FAD(i) while the node itself generates data packets at

a rate no lower than 1/SAD(i). Data received from children

and self-generated data are treated differently as follows:

• Whenever a data packet is received from a child node,

the packet is aggregated immediately with all the self-

generated data packets that have not yet been aggre-

gated, and then forwarded to the parent node. Hence, the

forwarding-aggregation delay is zero.

• A timer is fired every SAD(i) interval. When it fires,

all the self-generated data packets that have not yet been

aggregated are suppressed into a single packet and then

forwarded to the parent node.

Case III:
1

∑

j∈C(i) µ(j)
> FAD(i) and

1

λ(i)
> SAD(i).

In this case, data packets from child nodes arrive at a rate

lower than 1/FAD(i) while the node itself generates data

packets at a rate lower than 1/SAD(i). As the data packet

arrival/generation rates are low, every data packet is simply

forwarded to the parent node immediately upon its reception

or generation.

B. Output Rate Estimation Module (OREM)

This model is part of the JAM kernel (shown in Figure 4)

and is used to estimate the nodal output data rate. Before

explaining how it works in detail, we first prove FAD(i) 6

SAD(i) for any node i. According to the end-to-end delay

requirement in Equation (2), node i shall satisfy:

SAD(i) +
∑

m∈Si

(Tr(m) + FAD(m)) = D.

Similarly, for every child node j of i, we have:

SAD(j) + (FAD(i) + Tr(i)) +
∑

m∈Si

(Tr(m) + FAD(m)) = D.

Hence, it follows that:

FAD(i) 6 D −
∑

m∈Si

(Tr(m) + FAD(m)) = SAD(i). (3)

With the four inputs: FAD(i), SAD(i),
∑

j∈C(i) µ(j), and

λ(i), OREM estimates the output data rate of node i according

to the three cases described in Section III-A as follows:

µ(i) =































1
FAD(i)

: 1
∑

j∈C(i) µ(j)
6 FAD(i),

∑

j∈C(i) µ(j) +
1

SAD(i)
: 1

∑

j∈C(i) µ(j)
> FAD(i)

and 1
λ(i)

6 SAD(i),
∑

j∈C(i) µ(j) + λ(i) : 1
∑

j∈C(i) µ(j)
> FAD(i)

and 1
λ(i)

> SAD(i).
(4)

Note that a node’s input data rate is simply the sum of the

output data rates from all of its children.

C. Lifetime Estimation Module (LEM)

The LEM module is another module in the JAM kernel and

is used to estimate the nodal lifetime. Its input consists of

e(i), Tr(i), Tr(p) (i.e., Tr of node i’s parent node p), µ(i),

and
∑

j∈C(i) µ(j). Its output is the estimated nodal lifetime

L(i), which is computed as follows:

L(i) =
e(i)

c(i)
, (5)

where e(i) is the residual energy and c(i) is the energy

consumption rate:

c(i) =

(

Tr(p)

2
+ τ

)

µ(i)P +
φ

Tr(i)
P + τ

∑

j∈C(i)

µ(j)P. (6)

Here, P is the power consumption rate when a node’s radio is

on. To send a data packet, node i waits for
Tr(p)
2 time on av-

erage for its parent node p to wake up and then spends τ time

for the transmission. Hence, it consumes
(

Tr(p)
2 + τ

)

µ(i)P

power on average for data transmissions. The second term

in Equation (6) represents the average amount of power

consumed to monitor channel for φ time every Tr(i) interval,

while the third term is the average amount of power consumed

for data receptions. As radio is the most energy-consuming

component, we ignore other energy consumptions such as

sensing and computation, which could be easily plugged into

Equation (6).

D. Intra-node Cross-layer Collaboration Module (ICCM)

According to Equation (2), SAD value at the source node

can be computed once the FAD and Tr values of its ancestor

nodes have been determined. As both MAC and aggregation

behaviors affect nodal lifetime, their behaviors should be

coordinated. Specifically, as each forwarding node i introduces

a delay of D(i) = FAD(i)+Tr(i), the objective of the ICCM

module in the JAM kernel is to determine proper FAD(i) and

Tr(i) values for a given D(i), so that nodal lifetime L(i) is

maximized (denote as L∗(i)). To achieve this goal, there are

two cases to consider:

Case I: FAD(i) <
1

∑

j∈C(i) µ(j)
. Depending on the relation

between SAD(i) and λ(i), µ(i) equates the second or third

case of Equation (4). In these two cases, µ(i) is not affected

by FAD(i) and hence nodal lifetime is only affected by Tr(i)
according to Equations (5) and (6). As the energy consumption

rate (c(i)) in Equation (6) is a decreasing function of Tr(i),

optimal nodal lifetime is achieved when D(i) is fully allocated

to Tr(i) and hence FAD(i) = 0:

L
∗

(

i

∣

∣

∣
FAD(i) <

1
∑

j∈C(i) µ(j)

)

= L(i | FAD(i) = 0). (7)

Case II: FAD(i) >
1

∑

j∈C(i) µ(j)
. In this case, the output

data rate is µ(i) =
1

FAD(i)
according to Equation (4). In

order to achieve optimal nodal lifetime in this case, we need

to minimize the following term according to Equation (6):
(

Tr(p)

2
+ τ

)

1

FAD(i)
+

φ

Tr(i)
, (8)

which we denote as f(FAD(i)). To ease the presentation, we

use α to denote
Tr(p)
2 +τ . Plugging in Tr(i) = D(i)−FAD(i),

we can rewrite f(FAD(i)) as:

f(FAD(i)) =
α

FAD(i)
+

φ

D(i) − FAD(i)
. (9)

By solving f(FAD(i))′ = 0, we have:

L
∗

(

i
∣

∣

∣
FAD(i) >

1
∑

j∈C(i) µ(j)

)

=



















L

(

i
∣

∣

∣ FAD(i) = D(i)

1+
√

φ
α

)

: when 1
∑

j∈C(i) µ(j)
6

D(i)

1+
√

φ
α

6 D(i),

max
{

L (i | FAD(i) = D(i)) , L
(

i
∣

∣

∣ FAD(i) = 1
∑

j∈C(i) µ(j)

)}

: otherwise.
(10)

To summarize, for a given D(i), L∗(i) and the correspond-

ing optimal FAD(i) and Tr(i) can be computed by:

L
∗(i) = max{Equation (7),Equation (10)}, (11)

FAD
∗(i) = argFAD(i) max{L∗(i)}, (12)

Tr∗(i) = D(i)− FAD∗(i). (13)

E. JAM Kernel

As the core of the JAM scheme, the JAM kernel of node i is

triggered to execute periodically every W time, or on demand

whenever its parent node p changes Tr(p) or FAD(p) and

consequently the delay D(p). We use θ(p) to denote the

change in D(p). The JAM kernel is executed to decide:

• how the extra delay θ(p) introduced at parent node p shall

be absorbed by node i (in the amount of θ(p) − ∆ via

updating D(i) to D′(i) = D(i) − (θ(p) − ∆)) and its

child nodes (in the amount of ∆ via updating D(j) to

D′(j) = D(j)−∆); and

• how node i shall split D′(i) into Tr′(i) and FAD′(i),

so that the minimal nodal lifetime within node i’s neighbor-

hood can be increased. Detailed working procedure of the JAM

kernel is illustrated in Figure 4 and explained below, while the

effect of W will be discussed in Section III-F3.

The JAM kernel of node i takes the following inputs: Tr(p)

and θ(p) from parent node p, and λ(j), SAD(j), D(j), and
∑

k∈C(j) µ(k) from each child node j. Based on these inputs,

it checks the candidate values of ∆ from an ordered sequence

Ω = 〈0, δ,−δ, 2δ,−2δ, · · · 〉 one by one till the first feasible ∆
value has been found to increase the minimal nodal lifetime

within node i’s neighborhood, or till all values in Ω have

been exhausted. Here, δ is a system parameter. To ensure

D′(i) > 0, the smallest element in Ω is set to −
⌊

D(i)−θ(p)
δ

⌋

δ.

Similarly, to ensure D′(j) > 0, the largest element in Ω is set

to
⌊

minj∈C(i) D(j)

δ

⌋

δ. For each candidate value of ∆, the JAM

kernel executes the following:

• Iteratively, FAD′(i) takes a value from range [0, D′(i)]

with a small step ε. Here, ε is a system parameter. For

each FAD′(i) value, Tr′(i) = D′(i)− FAD′(i).

• Based on FAD′(i), Tr′(i), and the inputs from each

child node j, the ICCM module is called to compute

the maximum lifetime that node j can achieve, denoted

as L∗(j), and the corresponding FAD∗(j), according to

Equations (11) and (12), respectively.

• FAD∗(j) is fed into the OREM module to compute the

output data rate µ∗(j) of node j. With µ∗(j) from all

child nodes, the output data rate µ′(i) of node i is also

computed using the OREM module.

• Then, the LEM module is called to estimate the nodal

lifetime L′(i). If min{L′(i), L∗(j), ∀j ∈ Ci} is larger

than the highest L∆ that has been found so far, L∆ is

updated, and the corresponding FAD′(i) and Tr′(i) values

are recorded as FAD∆(i) and Tr∆(i).

• When FAD′(i) reaches the boundary condition, i.e.,

FAD′(i) > D′(i), if the best achievable L∆ improves the

minimal nodal lifetime within node i’s neighborhood, i.e.,

L∆ > min{L(i), L(j), ∀j ∈ Ci}, FAD∆(i) and Tr∆(i)

are output, θ(i) = ∆− θ(p) is appended to ACK packets

OREM

LEM

ICCM

OREM

FAD*(j)
μ'(i)

FAD’(i)

Tr’(i)

Tr’(i)
SAD’(j)

FAD’(i) = k

Tr’(i) = D’(i) - FAD’(i)

SAD’(j) = SAD(j) – (FAD’(i) - FAD(i)), j C(i)

SAD(i),

λ(i)

D(j)

λ(j),

k C(j)μ(k)

L*(j)

min{L’(i), L*(j), j C(i)} > L
Δ
?

L’(i)

e(i)

L
Δ

= min{L’(i), L*(j), j C(i)}

FAD
Δ
(i) = FAD’(i)

Tr
Δ
(i) = Tr’(i)

Y

(k+1) > D’(i) ?

N

N

k = k + 1

Y

FAD
Δ
(i), Tr

Δ
(i), (i) = Δ – (p)

Tr(p)

Child

j’s info

SAD(j)

λ(j), e(j), SAD(j),

D(j), k C(j)μ(k)

L
Δ

> min{L(i), L(j), j C(i)}?

k = 0, L
Δ

= 0

D’(i) = D(i) – ((p) – Δ)

Y

Pick first element of

as Δ

= <0, + , - , +2 , -2 , ., - (D(i) – (p))/ , , + min{D(j)}/ j C(i)>

N

D’(j) = D(j) – Δ

D’(j)

Δ

Δ

= \Δ Is Empty?

N

Y

λ(i), e(i), SAD(i),

FAD(i), D(i)

FAD(i), Tr(i), (i) = 0

λ(j), e(j),

k C(j)μ(k)

Node

i’s info

(p)

(p)

Parent

p’s info

Tr(p)

Parent

p’s info

μ*(j)

D(i), FAD(i)

Fig. 4. JAM kernel of node i. With parent, children, and self information, node i decides a proper ∆ value so that L∆ > maxmin{L(i), L(j),∀j ∈ Ci}.
The figure only shows the interactions between ICCM, OREM, and LEM modules for child node j of i. In the actual JAM implementation, these interactions
are executed for every child node of i.

to all child nodes, and search completes; otherwise, the

next candidate ∆ value will be tested.

Note that, if all the candidate values of ∆ in Ω have been

checked but none of them improves the minimal nodal life-

time within node i’s neighborhood, FAD(i) and Tr(i) remain

unchanged and θ(i) = 0.

In our implementation of the JAM scheme, we set δ = 0.5 s

and ε = 0.1 s. This means that, when the average per-hop

delay is 10 s, there is a total of 40 candidate values for ∆,

and 100 candidate values for FAD′. Therefore, in the worst-

case scenario, the JAM kernel needs to iterate 4000 times to

complete the execution, which is acceptable in practice. To

further reduce the complexity, we adopt a two-step heuristic

as follows. We first use a larger ε value (i.e., 1 s) to conduct

the initial search; when a feasible FAD′ has been found, we

use a smaller ε value (i.e., 0.1 s) to refine the search around

it. With this simple heuristic, the search space for FAD′ is

reduced to 30 and the total number of iterations in the worst-

case scenario is reduced to 1200 in the above example.

F. Other Design Considerations

1) JAM Initialization: After the data collection tree has

been established (i.e., the routing table of each node becomes

stable), each node i needs to decide its initial FAD(i) and

Tr(i) values. In JAM, all nodes start with a default Tr value

and the rest of the end-to-end delay bound is evenly distributed

to nodes along the source-to-sink path. For this purpose, each

node i periodically measures the most updated (i) accumu-

lative delays from its parent node to the sink (D(i → s)),

i.e., the second term in the end-to-end delay requirement in

Equation (2), and (ii) hop count to its farthest descendant

(h(i)).

We assume that the sink’s radio is always on and its wakeup

interval is Tr(s) = 0 s. As the sink is the end of data delivering

paths, FAD(s) = 0 s. D(s → s) = 0 s is then broadcast to all

of its children. Upon receiving D(i → s), each child node j

acts as follows:

• If node j is not a leaf node, it sets D(j) = D−D(i→s)
h(j)+1 ,

FAD(j) = D(j) − Tr(j), SAD(j) = D − D(i → s),
and sends D(j → s) = D(i → s) + D(j) to all of its

children. In the example shown in Figure 5, node 1 sets

D(1) = 15/3 = 5 s, FAD(1) = 4 s, SAD(1) = 15 s, and

sends D(1 → s) = 5 s to nodes 2 and 3.

• If node j is a leaf node, it simply sets SAD(j) = D −
D(i → s). In the example shown in Figure 5, leaf node

4 sets SAD(4) = 15− 10 = 5 s.

1 2

3

4S

Tr(s) = 0s

FAD(s) = 0s

D(s→s) = 0s

Tr(1) = 1s

FAD(1) = 4s

SAD(1) = 15s

D(1→s) = 5s

Tr(2) = 1s

FAD(2) = 4s

SAD(1) = 10s

D(2→s) = 10s

SAD(3) = 10s

SAD(4) = 5s

Fig. 5. JAM initialization example where the default Tr is 1 s and D is 15 s.

2) Handling of Packet Loss: In practice, data or ACK

packets may get lost due to collision, interference, or dete-

riorated channel condition, and the sensor node may need

to retransmit multiple times before the data packet can be

delivered successfully. This issue has been dealt with in

JAM by replacing Tr with ETX · Tr in the end-to-end delay

requirement (i.e., Equation (2) in Section II-B), where ETX

is the expected number of transmission attempts to deliver a

data packet successfully over one hop:

SAD(i) +
∑

m∈Si

(ETX(mc
,m)Tr(m) + FAD(m)) = D. (14)

Here, mc is the child node of m along the path from i to the

sink. Similarly, Equations (6) and (10) have also been updated

to include the ETX information. Note that measurement of

ETX is readily available in many routing protocols such as

CTP [17], and thus not an extra overhead.
3) Adaptive Adjustment Interval W : The JAM kernel is

triggered to execute periodically every W interval, which

poses a tradeoff. A small interval, i.e., frequent adjustment,

makes JAM more responsive to the changes in the network and

allows it to approach a balanced nodal lifetime distribution in

the network sooner, but uses more computational resources.

A large interval, on the other hand, uses less computational

resources but may let nodes stay in suboptimal states for a

longer time.

We adopt an adaptive approach to adjust W dynamically

(between Wmin and Wmax) to the network condition. Specifi-

cally, if the current state is already the best that can be found,

i.e., no ∆ in Ω improves the minimal nodal lifetime within

the neighborhood as described in Section III-E, W is doubled

till reaching Wmax. Otherwise, W is reset to Wmin. This way,

when the nodal lifetime distribution is heterogeneous or the

network configuration changes, JAM allows the network to re-

converge quickly to the balanced nodal lifetime distribution;

otherwise, it decreases the adjustment frequency exponentially

to save the control overhead in the long term. In the JAM

implementation, we set Wmin and Wmax conservatively to 1

minute and 16 minutes, respectively.

G. JAM Implementation

1) Software Component: We have implemented JAM in

TinyOS 2.1.0. As shown in Figure 6, the shaded parts illustrate

the core components of JAM in the software architecture: (i)

the aggregation component that sits between application and

routing layers, and (ii) the MAC component that is designed

based on RI-MAC [19]. CTP [17] is adopted as the routing

layer protocol to set up the data collection tree.

SelfAggMFwdAggM

NeighborMgmtM

SenderMReceiverM

MACControllerM

SendReceive

SendReceive

SendReceive

SendReceive PowerControl

RoutingInfo

JAMKernelM

Routing

MACSchedulerM

RadioCore

Application

Fig. 6. Implementation of JAM in TinyOS.

When data packets from a child node j arrives at node

i’s MAC layer, the piggybacked control information will be

extracted, passed to, and processed at the JAMKernelM mod-

ule, which implements the JAM kernel. The NeighborMgmtM

module manages all senders’ information while the FwdAggM

and SelfAggM modules maintain the aggregation timers. After

deciding the new Tr(i) and FAD(i) values, the JAMKernelM

module notifies the MACControllerM module to adopt the

latest wakeup interval, and the FwdAggM and SelfAggM

modules to adjust the aggregation timers. JAMKernelM also

informs MACControllerM of θ(i) and piggybacks it in the

ACKs to child nodes.

2) Hardware Component: Among all the control infor-

mation piggybacked in data packets, nodal residual energy

is an important piece. As TelosB motes do not provide an

interface to measure nodal residual energy, we have designed

and fabricated a TelosB power meter kit as shown in Figure 7.

This kit measures the nodal power consumption rate, based on

which we can calculate the total energy consumed so far. The

nodal residual energy is then the difference between the battery

energy capacity [20] and the consumed energy.

Fig. 7. TelosB power meter kit used in JAM.

IV. PERFORMANCE EVALUATION

NS-2 based simulations and TinyOS testbed experiments

have been conducted to evaluate the JAM performance in

terms of network lifetime, average nodal power consumption,

and end-to-end delivery delay. We compare JAM with a

naive scheme called AVG which simply sets FAD and Tr

values according to Section III-F1 without runtime adjustment,

and LBA [7] which is a state-of-the-art lifetime-balancing

aggregation protocol under delay constraint.

A. NS-2 Simulations

In the simulation, nodes are randomly deployed in a 500 m

× 500 m area and the sink is located at the center of the

area. The evaluation results are averaged over 30 different

random topologies. We vary the end-to-end delay requirement,

initial nodal energy distribution, and the network density in

the simulation. The default initial nodal energy is 4500 Joules.

The maximal communication range is 70 meters and the power

consumption is 69 mW when radio is on. All nodes are sources

and the data generation rate is a random value between 0.1

and 1 packet per second. The packet size is 128 bytes. In both

simulations and testbed experiments, δ = 0.5 s, ε = 0.1 s,

Wmin = 1 minute, and Wmax = 16 minutes.

1) Performance under Different End-to-End Delay Require-

ments: Figure 8 compares the performances of all the evalu-

ated schemes with the end-to-end delay requirement varying

between 20 s and 50 s. Left column of Figure 8 shows

evaluation results when all nodes start with 4500 J energy

while right column shows results when the initial nodal energy

is a random value between 4500 ∗ (1± 40%) J.

Different from LBA which does not improve the network

lifetime much when the initial nodal energy distribution is

homogeneous as shown in Figure 8(a) (similar finding has also

been observed in [7]), JAM consistently improves the network

lifetime in both homogeneous and heterogeneous initial energy

settings under all end-to-end delay requirements. Specifically,

when all nodes start with the same amount of energy, com-

pared with LBA, JAM improves the network lifetime by 158%

and 59% when the end-to-end delay requirement is 20 s and

50 s, respectively. When nodes start with different energy, the

improvement ratio is 165% and 50% when the requirement is

20 s and 50 s, respectively.

 0

 50

 100

 150

 200

 20 30 40 50

(h
)

e2e delay requirement (s)

AVG
LBA
JAM

(a) Network lifetime.

 0

 50

 100

 150

 200

 20 30 40 50

(h
)

e2e delay requirement (s)

AVG
LBA
JAM

(b) Network lifetime.

 0

 5

 10

 15

 20

 25

 20 30 40 50

(m
W

)

e2e delay requirement (s)

AVG
LBA
JAM

(c) Average nodal power consump-
tion.

 0

 5

 10

 15

 20

 25

 20 30 40 50

(m
W

)

e2e delay requirement (s)

AVG
LBA
JAM

(d) Average nodal power consump-
tion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60
C

D
F

e2e delay (s)

20s
30s
40s
50s

(e) End-to-end delay in JAM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

e2e delay (s)

20s
30s
40s
50s

(f) End-to-end delay in JAM.

Fig. 8. Performance comparison under different end-to-end delay require-
ments. Number of nodes in the network is 60, and initial Tr is 1.5 s. Figures
on the left column are results when initial nodal energy is 4500 J while figures
on the right are results when initial nodal energy is a random value between
4500 ∗ (1± 40%) J.

JAM yields more significant network lifetime improvement

when the end-to-end delay requirement is more stringent

because smaller delay bound means more limited FAD values

for each node along source-to-sink paths, which may result

in insufficient data suppression and hence heavier network

traffic. As MAC behaviors in AVG and LBA are not jointly

adjusted with aggregation behaviors, the communication over-

head could be expensive. Hence, the heavy traffic could soon

deplete the nodal energy and constrain the network lifetime. In

comparison, JAM yields a much lower average nodal energy

consumption due to its joint MAC and aggregation design, as

shown in Figures 8(c) and 8(d).

Figures 8(e) and 8(f) plot the CDF (Cumulative Distribu-

tion Function) of the end-to-end delay for the JAM scheme.

Results show that all the end-to-end delay requirements are

well-satisfied. Similar to RI-MAC, JAM drops a data packet

after a certain number (4 in our implementation) of failed

transmission attempts. Therefore, when the end-to-end delay

requirement is relatively small, i.e., 20 s, the heavy traffic

deteriorates channel contentions and about 4% of data packets

are dropped, while the data delivery ratio approaches 100%

when the end-to-end delay requirement increases to 50 s. Due

to space limitation, we omit the CDF results of the end-to-

end delay for other evaluation scenarios, where JAM exhibits a

similar performance as the ones shown in Figures 8(e) and 8(f).

2) Performance under Different Initial Energy: We now

evaluate the impact of the initial nodal energy heterogeneity

level (denoted as β). It is defined as follows. With a hetero-

geneity level of β, the initial nodal energy is a random value

between 4500 ∗ (1±β) Joules. Results are shown in Figure 9.

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6

(h
)

β

AVG
LBA
JAM

(a) Network lifetime.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6

(m
W

)

β

AVG
LBA
JAM

(b) Average nodal power consump-
tion.

Fig. 9. Performance comparison under different initial nodal energy het-
erogeneity levels. Number of nodes in the network is 60, end-to-end delay
requirement is 40 s, and initial Tr is 1.5 s.

With AVG, as Tr and FAD are not adjusted at runtime, net-

work lifetime is bounded by the initial minimal-lifetime node.

As the initial energy distribution becomes more and more

heterogeneous (i.e., β increases), network lifetime achieved by

AVG drops quickly. On the other hand, both LBA and JAM re-

distribute the end-to-end delay so that energy bottleneck nodes

could be saved by other high-energy nodes along the same

route and hence yield a significantly longer network lifetime.

As a larger β demands more re-distribution efforts, the network

lifetime drops as well with LBA and JAM. However, as all

the nodes along the route absorb this effect collaboratively,

the network lifetime drops less quickly. For example, network

lifetime drops 21% with JAM when β increases from 0% to

60%, in comparison to 46% with AVG. Finally, thanks to the

joint MAC and aggregation design, JAM yields a consistently

70% longer network lifetime than LBA under different β
values.

3) Performance under Different Densities: As shown in

Figure 10, JAM always yields a significantly longer network

lifetime than other schemes, regardless of the network density.

It is interesting to see (in Figure 10(b)) that the average

nodal power consumption decreases as the network density

increases. This is because, with a higher network density and

consequently a higher node degree on average, a source node

may reach the sink via a shorter path. This means less nodes

are involved in the path and the overall energy consumption

is thus reduced.

B. Testbed Experiments

We set up a testbed network of 32 TelosB motes, forming a

fixed tree topology shown in Figure 11. All nodes are sources,

and the data generation interval is uniformly distributed be-

tween 0.8 and 1.2 s. The default Tr value is 1.5 s, and the

end-to-end delay requirement varies between 20 s and 40 s.

 0

 50

 100

 150

 200

 40 60 80 100

(h
)

node number

AVG
LBA
JAM

(a) Network lifetime.

 0

 2

 4

 6

 8

 10

 12

 14

 40 60 80 100

(m
W

)

node number

AVG
LBA
JAM

(b) Average nodal power consump-
tion.

Fig. 10. Performance comparison under different network densities. End-
to-end delay requirement is 40 s, initial Tr is 1.5 s, and initial nodal energy
level is a random value between 4500 ∗ (1± 40%) J.

26

27

9

25

8
16

4

3

20

1
0

5

6
11

10

7
13

1715

29

31

24
28

21

30

19

2

22

18

14

23

12

Fig. 11. Network topology in testbed experiments.

In order to complete the experiments within a reasonable

amount of time, we study how fast a node consumes a small

designated amount of energy, and evaluate its nodal lifetime

as the time period during which the designated amount of

energy is consumed. We run two sets of experiments. In the

first set, the initial available energy distribution is uniform and

all nodes have 450 Joules; results are shown in the left column

of Figure 12. In the second set, the initial available energy at

an individual node is a random value between 250 and 450

Joules; results are shown in the right column of Figure 12.

Overall, experiment results confirm our observations in the

simulation study.

To illustrate how JAM adaptively tunes MAC and aggrega-

tion operational parameters to balance nodal lifetime within

the neighborhood, we plot in Figure 13 the changing traces

of the operational parameters of the nodes along the path

24 → 21 → 16. We observe that during time period [0, 0.2] h,

as shown in Figure 13(a), node 21 has a lower nodal lifetime

than nodes 16 and 24. To improve node 21’s lifetime, (i) node

16, as node 21’s parent, decreases its Tr to save node 21’s

energy cost on idly waiting during transmissions; (ii) node 21

increases its FAD to reduce the amount of outgoing traffic; and

(iii) node 24 decreases its Tr to ensure the delay requirement

is satisfied. As a result, their nodal lifetimes are balanced

gradually. During time period [0.2, 0.5] h, as all three nodes

have reached a similar level of nodal lifetime, their operational

parameters are relatively stabilized.

 0

 2

 4

 6

 8

20 30 40

(h
)

e2e delay requirement (s)

AVG
LBA
JAM

 0

 2

 4

 6

 8

20 30 40

(h
)

e2e delay requirement (s)

AVG
LBA
JAM

(a) Network lifetime.

 0

 2

 4

 6

 8

20 30 40

(h
)

e2e delay requirement (s)

AVG
LBA
JAM

 0

 2

 4

 6

 8

20 30 40

(h
)

e2e delay requirement (s)

AVG
LBA
JAM

(b) Network lifetime.

 0

 10

 20

 30

 40

20 30 40

(m
W

)

e2e delay requirement (s)

AVG
LBA
JAM

 0

 10

 20

 30

 40

20 30 40

(m
W

)

e2e delay requirement (s)

AVG
LBA
JAM

(c) Average nodal power consump-
tion.

 0

 10

 20

 30

 40

20 30 40

(m
W

)

e2e delay requirement (s)

AVG
LBA
JAM

 0

 10

 20

 30

 40

20 30 40

(m
W

)

e2e delay requirement (s)

AVG
LBA
JAM

(d) Average nodal power consump-
tion.

Fig. 12. Experiment results under different end-to-end delay requirements.
Figures on the left column are results when initial available energy is 450 J
while figures on the right are results when initial available energy is a random
value between 250 and 450 J.

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.5

(h
)

Time (h)

node 16 node 21 node 24

(a) Nodal lifetime.

 0
 2
 4
 6
 8

 10

 0 0.2 0.5

(s
)

(b) Nodal FAD values.

 0
 1
 2
 3
 4
 5

 0 0.2 0.5

(s
)

(c) Nodal Tr values.

Fig. 13. Changing traces of nodal lifetime, FAD, and Tr values along the
path 24 → 21 → 16.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a new holistic approach called JAM

to prolong the sensor network lifetime. Different from the ex-

isting works which adapt either MAC or aggregation behavior

alone, JAM integrates the advantages of both approaches and

therefore can extend the network lifetime more effectively. In

addition, JAM can also meet the end-to-end delay requirement

specified by the applications.

JAM was designed to work with static data collection trees.

In the future, we will improve the JAM design by taking

into account the routing strategy. As routing behavior also

affects the network traffic distribution, a joint MAC, routing,

and aggregation design may prolong the network lifetime even

further.

ACKNOWLEDGMENT

This work is supported partly by the NSF under grants CNS-

0831874 and EECS-1128312, and by the ONR under grant

N00014-09-1-0748.

REFERENCES

[1] W. Wang, V. Srinivasan, and K. C. Chua, “Using Mobile Relays to
Prolong the Lifetime of Wireless Sensor Networks,” in MobiCom, 2005.

[2] J. Chang and L. Tassiulas, “Energy Conserving Routing in Wireless
Ad-hoc Networks,” in INFOCOM, 2000.

[3] ——, “Maximum Lifetime Routing in Wireless Sensor Networks,”
IEEE/ACM Trans. Netw., 2004.

[4] R. Braynard, A. Silberstein, and C. Ellis, “Extending Network Lifetime
Using an Automatically Tuned Energy-Aware MAC Protocol,” in EWSN,
2006.

[5] Z. Li, M. Li, and Y. Liu, “Towards Energy-Fairness in Asynchronous
Duty-Cycling Sensor Networks,” in INFOCOM, 2012.

[6] A. Meier, M. Woehrle, M. Zimmerling, and L. Thiele, “ZeroCal:
Automatic MAC Protocol Calibration,” in DCOSS, 2010.

[7] Z. Li, Y. Peng, D. Qiao, and W. Zhang, “LBA: Lifetime Balanced Data
Aggregation in Low Duty Cycle Sensor Networks,” in INFOCOM, 2012.

[8] L. Becchetti, A. Marchetti-Spaccamela, A. Vitaletti, P. Korteweg,
M. Skutella, and L. Stougie, “Latency-Constrained Aggregation in
Sensor Networks,” ACM Trans. Algorithms, 2009.

[9] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM

Trans. Database Syst, 2005.
[10] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and

U. Ramachandran, “DFuse: a Framework for Distributed Data Fusion,”
in SenSys, 2003.

[11] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTunes:
Runtime Parameter Adaptation for Low-Power MAC Protocols,” in
IPSN, 2012.

[12] Q. Xiang, J. Xu, X. Liu, H. Zhang, and L. Rittle, “When In-Network
Processing Meets Time: Complexity and Effects of Joint Optimization
in Wireless Sensor Networks,” in RTSS, 2009.

[13] Z. Ye, A. Abouzeid, and J. Ai, “Optimal Policies for Distributed Data
Aggregation in Wireless Sensor Networks,” in INFOCOM, 2007.

[14] J. Zhang, X. Jia, and G. Xing, “Real-time Data Aggregation in
Contention-based Wireless Sensor Networks,” ACM Trans. Sen. Netw.,
2010.

[15] C. Hua and T.-S. P. Yum, “Optimal Routing and Data Aggregation
for Maximizing Lifetime of Wireless Sensor Networks,” IEEE/ACM

Transactions on Networking, vol. 16, no. 4, pp. 892 –903, 2008.
[16] L. Xiang, J. Luo, and A. V. Vasilakos, “Compressed Data Aggregation

for Energy Efficient Wireless Sensor Networks,” in SECON, 2011.
[17] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection

Tree Protocol,” in SenSys, 2009.
[18] S. F. Madden, M. J. Hellerstein, and W. J. M. Hong, “TAG: A Tiny

AGgregation Service for Ad-Hoc Sensor Networks,” in OPERATING

SYSTEMS REVIEW, 2002, VOL 36.
[19] Y. Sun, O. Gurewitz and D. Johnson, “RI-MAC: a receiver-initiated

asynchronous duty cycle MAC protocol for dynamic traffic loads in
wireless sensor networks,” in SenSys, 2008.

[20] Online Link, http://www.allaboutbatteries.com/Energy-tables.html.

