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Abstract—This paper presents a new receiver-initiated sensor
network MAC protocol, called CyMAC, which has the following
unique features. It reduces the idle listening time of sensor nodes
via establishing rendezvous times between neighbors, provides
the desired relative delay bound guarantee for data delivery
services via planning the rendezvous schedules carefully, and
adjusts the sensor nodes’ duty cycles dynamically to the varying
traffic condition. More importantly, CyMAC achieves the above
goals without requiring time synchrony between sensor nodes.
We have implemented and evaluated CyMAC in both TinyOS
and the ns-2 simulator. Experimental and simulation results show
that, comparing with RI-MAC – a state-of-the-art sensor network
MAC protocol, CyMAC can always guarantee the desired delay
bound for data delivery services and yields a lower duty cycle
under reasonable delay requirements.

I. INTRODUCTION

Wireless sensor networks should be energy efficient in order

to operate for a long time. When a sensor node has its

radio turned on, it operates at a similar power consumption

level regardless whether it is transmitting, receiving or idle

listening [1]. Hence, numerous MAC protocols have been

proposed to reduce the idle listening time of a sensor node,

which has been found to contribute substantially to a sensor

node’s total energy consumption [2], [3].

A. Related Work

Most of the existing MAC protocols are either synchronous

or asynchronous. Representative synchronous protocols such

as S-MAC [1], T-MAC [4], RMAC [5] and DW-MAC [6]

require neighbor nodes to be time-synchronized. They align

the active and sleep intervals of neighbor nodes, which wake

up only during the common active time intervals to exchange

packets. Since the active intervals usually are short, substantial

energy can be saved. However, strictly synchronizing the

clocks of neighbor nodes imposes high overhead, and the

aligned and short active intervals can cause congestion when

multiple flows cross the same node.

Asynchronous protocols such as B-MAC [7], WiseMAC [8],

X-MAC [9] and RI-MAC [10] decouple the duty cycle sched-

ules of different nodes and thus eliminate the overhead for

synchronization. B-MAC, WiseMAC and X-MAC are sender-

initiated preamble-based protocols which employ the low

power listening technique. Particularly, B-MAC requires a

sender to transmit a preamble longer than the sleep interval

of its receiver to signal the receiver. WiseMAC shortens the

preamble length by requiring a sender to learn the duty cycle

schedule of its receiver and start a preamble shortly before the

receiver wakes up. X-MAC improves B-MAC by replacing the

long preamble with a sequence of short, strobed preambles.

Nevertheless, these protocols are optimized mainly for light

traffic conditions. In the scenarios of bursty or high traffic

load, which can be caused by convergecast [11], correlated

events [12] and data aggregation [13], the preambles may

congest the channel and block data transmissions. Hybrid

protocol such as SCP [14] combines a synchronous protocol

with asynchronous low power listening but suffers the same

clock synchronization overhead as synchronous protocols.

To work under a wider range of traffic conditions, RI-

MAC [10] adopts a receiver-initiated beacon-based strategy.

Each node periodically wakes up and sends out a short beacon

to explicitly notify its neighbors that it is ready to receive

data. When a node has data to transmit, it wakes up and

waits for a beacon from its receiver. Once such a beacon is

received, it starts sending the data. Compared to the sender-

initiated preamble-based protocols, RI-MAC uses shorter and

less frequent beacons which consume less bandwidth, and

its receiver-initiated nature allows more efficient collision

resolution. However, RI-MAC has the following limitations.

A sender needs to remain awake after a data packet arrives,

till the receiver wakes up to receive the packet, potentially

wastes a lot of time on idle listening. Also, a receiver sends

out beacons at a fixed time interval on average and does not

adapt to changes of traffic pattern.

B. Motivations and Contributions

To further reduce idle listening and improve the energy

efficiency of sensor networks, we propose in this paper a new

MAC protocol called CyMAC. Similar to RI-MAC, CyMAC

is a receiver-initiated beacon-based protocol. The difference

is that CyMAC reduces the idle listening time significantly

through establishing rendezvous times between sender and

receiver. In addition, rendezvous schedules are adaptive to the

changes of traffic condition so that sender and receiver can

operate with minimal duty cycles while a certain desired delay

bound for data delivery services can still be guaranteed. More

importantly, CyMAC achieves the above goals without requir-

ing clock synchrony between sensors. It functions properly

as long as the desired delay bound is less stringent than the

degree of clock asynchrony.

CyMAC targets to provide relative delay bound [15] guar-

antee for sensor data delivery services, which is defined as

the ratio of the data delivery delay to the average data arrival

interval. For example, if data packets arrive every 100 seconds

and the delivery delay of a data packet is 10 seconds, the

relative delay is 10%. This is in contrast to the absolute
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delay bound that usually is provided with a fixed beacon

interval (e.g., in RI-MAC) so that the delivery delay of a

data packet can be guaranteed less than the beacon interval.

For sensor network applications, a relative delay bound could

be more meaningful and important than an absolute delay

bound. For example, the same delivery delay of one second

may have different effects on two different sensor network

applications: one with a data arrival interval of one second

and the other with a data arrival interval of 100 seconds. The

former situation could be far worse than the latter, since by the

time when a data packet is delivered, it has become obsolete

because a newer data packet has arrived. Relative delay bound

may help sensor nodes conserve energy too. For example,

if a 10% relative delay bound is acceptable, when the data

arrival interval increases from 10 to 100 seconds, the number

of beacons sent by the receiver and hence the energy consumed

by the receiver can be reduced by an order of magnitude.

The contributions of this work are summarized as follows:

• We propose a new receiver-initiated MAC protocol, called

CyMAC, for sensor networks. CyMAC attempts to mini-

mize idle listening and hence duty cycles of sensor nodes

via establishing rendezvous times between neighbors. It

is adaptive to the changes in traffic condition, and can

guarantee desired relative delay bound for sensor data

delivery services under various traffic conditions. Differ-

ent from existing synchronous MAC protocols, CyMAC

does not require clock synchrony between sensor nodes.

• We have implemented CyMAC in TinyOS and evaluated

it with small-scale experiments. We have also imple-

mented it in the ns-2 simulator for evaluation in large-

scale networks.

• Extensive experiments and simulations have demon-

strated that CyMAC can always guarantee the desired

delay bound, and has a lower duty cycle than RI-MAC

in most cases except when the required delay bound is

very tight. In this case, CyMAC can still provide the delay

bound guarantee at the cost of having a slightly higher

duty cycle than RI-MAC.

C. Organization

In the rest of the paper, Section II presents the design details

of CyMAC, which is followed by the description of CyMAC

implementation in TinyOS. Experiment and simulation results

are presented in Section III. Section IV discusses the future

work and concludes the paper.

II. CYMAC DESIGN

In the following, we give an overview of the proposed

CyMAC protocol for sensor networks.

1) CyMAC is a receiver-initiated MAC protocol but with

minimal idle listening time at the sender side. Similar to RI-

MAC, the data exchange between CyMAC sender and receiver

is initiated by the receiver with a beacon. However, different

from RI-MAC which requires the sender to remain awake

(upon a data packet arrival) and listen idly till the beacon

arrives, CyMAC only requires the sender to wake up at pre-

scheduled rendezvous times to communicate with the receiver,

thus reducing the idle listening time significantly.

2) CyMAC provides delay-bounded data delivery services.

A unique feature of CyMAC is its ability to adjust the duty

cycles and rendezvous schedules of sensor nodes to provide

the desired relative delay bound to data delivery services.

3) CyMAC adjusts the sensor nodes’ duty cycles dynami-

cally to the varying traffic condition. Another unique feature

of CyMAC is dynamic duty cycling. When the traffic is light,

CyMAC nodes sleep more and send fewer beacons to conserve

more energy, while when the traffic is heavy, CyMAC nodes

wake up more often to interact with each other so as to provide

the desired delay bound.

4) CyMAC does not require clock synchrony between sensor

nodes: Different from existing synchronous MAC protocols,

CyMAC does not require clock synchrony between sensor

nodes nor synchronization protocols executed on sensor nodes.

CyMAC functions properly as long as the desired delay bound

is less stringent than the degree of clock asynchrony between

neighbor nodes. Section II-C discusses in detail how CyMAC

handles clock asynchrony issues.

Next, we describe the design of CyMAC in detail. Table I

lists the variables maintained at each CyMAC node.

TABLE I
VARIABLES MAINTAINED AT EACH CYMAC NODE

Variable Meaning

For each
sender i

TLAST,i
arrival time of the last received data packet from
sender i

TBEACON,i
latest time to serve sender i (by sending a beacon)
in order to satisfy the delay bound

TBEACON = mini (TBEACON,i) scheduled next beacon time

For each
receiver j

TLISTEN,j scheduled next listen time for receiver j

DONEj

the set of packets that (i) have failed all transmis-
sion attempts (ii) arrive after the last successfully-
delivered packet; the last successfully-delivered
packet is also included in set DONEj

WAITj the set of packets waiting to be transmitted

For each
packet x
in WAITj

or DONEj

Tarrv(x) arrival time of packet x
D(x) delay between Tarrv(x) and when x is transmitted

θ(x) updated estimate of mean of packet arrival interval

δ(x)
updated estimate of variance of packet arrival in-
terval

A. Receiver Behavior

The operation flowchart of a CyMAC receiver is shown in

Fig. 1. In CyMAC, the receiver wakes up at the scheduled

beacon time TBEACON,i to interact with sender i by sending a

beacon and then waiting for a short dwell time1. As shown

in the flowchart, if a new packet is received successfully, the

receiver records the packet information, updates its estimates

of the data traffic, and schedules the next beacon time using

the Iallow information piggybacked in the packet by the sender

(which tells the receiver when the next beacon should be sent);

otherwise, it schedules the next beacon time for sender i based

on (i) TBEACON,i; (ii) TLAST,i – the arrival time of the last

received data packet from sender i; and (iii) µ – the desired

relative delay bound over a single hop. Note that, since a

receiver may serve multiple senders, it performs the above

routine for all senders and informs everyone of its very next

scheduled beacon time: TBEACON = mini(TBEACON,i). This

1This short dwell time is platform dependent. In our implementation of
CyMAC on MicaZ motes, it is set to 17.5ms.
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Sends Beacon and waits for 5 ms

Data received?

Turns off the radio

v = the sender of x

TLAST,v = TBEACON
TBEACON,v = TLAST,v + Iallow carried in x

Sends ACK(TBEACON) to sender v

N

Y

At time TBEACON, receiver turns on radio

For each sender i, if TBEACON == TBEACON,i, 

then TBEACON,i = TBEACON,i + μ(TBEACON,i-TLAST,i)

TBEACON = mini (TBEACON,i)

x = the data packet received

j = the next-hop node of x

Sets Tarrv(x) = TBEACON and D(x) = 0

Calculates (x) and (x)

Adds x to WAITj : WAITj = WAITj x

TBEACON = mini (TBEACON,i)

I

II

Fig. 1. Operation flowchart of a CyMAC receiver.

way, a sender may be able to forward a packet that arrives

earlier than expected to the receiver opportunistically at an

earlier beacon time that was scheduled for other senders, thus

reducing the delivery delay further.

1) Online Traffic Estimation: Upon arrival of a data

packet x, the receiver updates its estimate of the mean of data

arrival interval as:

θ(x) = α(x)θ(x′) + (1 − α(x))θnew(x), (1)

where x′ is the last successfully-received data packet prior

to x and has the same next-hop node as packet x. θnew(x) =
Tarrv(x) − Tarrv(x

′) is the new sample mean and α(x) is the

smoothing factor: α(x) = 2
−θnew(x)

10·θ(x′) · 0.9. The reason for

choosing such a smoothing factor for estimating the mean

of data arrival interval is that, a larger θnew(x) value implies

that the previously estimated mean (θ(x′)) has become more

obsolete, and hence a larger weight should be given to the

new sample. For example, if θnew(x) = 10 · θ(x′), meaning

that packet x arrives much later after the previous packet

x′ (10 times the mean arrival interval), then a larger weight

(0.55 = 1 − α(x)) is given to the new sample.

The receiver also updates its estimate of the variance of data

arrival interval, but with a fixed smoothing factor:

δ(x) = βδ(x′) + (1 − β)δnew(x), (2)

where δnew(x) = |θnew(x)− θ(x′)| is the new sample variance

and β = 0.9. This is because a late arriving packet (i.e., a

larger θnew(x) value) may skew the calculation of δnew(x);
hence we opt to not give a larger weight to the new sample

in the estimation to avoid undesired complication.

2) Relative Delay Bound Guarantee: One of the key design

goals of CyMAC is to provide delay-bounded data delivery

services, meaning that if all packets (beacon, data and ACK)

TBEACON,i

Time

TLAST,i

D(p1)
(p1)

Tarrv(p2)

Iallow(p1)

Tarrv(p1)

Sender i

Receiver

Scenario IScenario III

Tarrv(p2)

: Data received

: Data not received

: Beacon not received

: Beacon received

: Beacon and ACK received

(a) Scenario I: packet p2 arrives between Tarrv(p1) + θ(p1) and TBEACON,i. Scenario
III: packet p2 arrives before Tarrv(p1) + θ(p1).

T’BEACON,iTBEACON,iTLAST,i

D(p2)

(TBEACON,i-TLAST,i)

D(p1)

Iallow(p1)

Tarrv(p1) Tarrv(p2)

Sender i

Receiver Time

(b) Scenario II: packet p2 arrives after TBEACON,i .

Fig. 2. Example scenarios to illustrate how the desired delay bound is
satisfied with CyMAC.

are transmitted successfully, the delivery delay of a data packet

x over a single hop is

D(x) 6 µmax{θ(x), Tarrv(x) − Tarrv(x
′

)}, (3)

where x′ is the last successfully-received data packet prior to x
and has the same next-hop node as packet x. µ is the desired

relative delay bound over a single hop. In practice, a sensor

network application often specifies its desired delay bound in

terms of end-to-end delay (µe2e). Let ξ denote the hop-count

diameter of the sensor network, we conservatively translate

the application-specified end-to-end delay bound µe2e to the

hop-by-hop relative delay bound µ as follows:

µ = (1 + µe2e)
1/ξ − 1. (4)

To illustrate how CyMAC guarantees Eq. (3), we present

a few example scenarios in Fig. 2. Here, we assume that a

CyMAC receiver only has one sender (sender i) to receive

data packets from. As shown in the figure, after packet p1 is

delivered successfully from sender i to the receiver at time

TLAST,i, the receiver schedules its next beacon time to

TBEACON,i = TLAST,i + Iallow(p1), (5)

where Iallow(p1) is the information piggybacked in packet p1

and set by sender i. For a relative delay bound of µ, let us set

Iallow(p1) to

Iallow(p1) = (1 + µ)θ(p1) −D(p1). (6)

Then, depending on the arrival time of the next data packet

p2, there are three possible scenarios:

• Scenario I: Tarrv(p1) + θ(p1) 6 Tarrv(p2) 6 TBEACON,i. In

this case, packet p2 arrives before the scheduled beacon

time TBEACON,i but after Tarrv(p1) + θ(p1), as shown in

Fig. 2(a). The delivery delay for packet p2 is then:

D(p2) = TBEACON,i − Tarrv(p2)

= TLAST,i + (1 + µ)θ(p1) −D(p1) − Tarrv(p2)

= Tarrv(p1) + (1 + µ)θ(p1) − Tarrv(p2)

6 Tarrv(p1) + (1 + µ)θ(p1) − (Tarrv(p1) + θ(p1))

= µθ(p1) 6 µmax{θ(p2), Tarrv(p2) − Tarrv(p1)}.

(7)
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Therefore, the desired delay bound is guaranteed.

• Scenario II: Tarrv(p2) > TBEACON,i. In this case, packet

p2 arrives after the scheduled beacon time, as shown in

Fig. 2(b). As a result, the receiver schedules the next

beacon time to

T ′

BEACON,i = TBEACON,i + µ(TBEACON,i − TLAST,i). (8)

If packet p2 arrives before T ′
BEACON,i, its delivery delay

is bounded under the limit:

D(p2) = T ′

BEACON,i − Tarrv(p2) < T ′

BEACON,i − TBEACON,i

= TBEACON,i + µ(TBEACON,i − TLAST,i) − TBEACON,i

= µ(TBEACON,i − TLAST,i) < µ(Tarrv(p2) − Tarrv(p1))

= µmax{θ(p2), Tarrv(p2) − Tarrv(p1)}.

(9)

If packet p2 arrives after T ′
BEACON,i, a similar analysis can

be applied to show that the desired delay bound is always

satisfied.

• Scenario III: Tarrv(p2) < Tarrv(p1) + θ(p1). In this case,

since packet p2 arrives before Tarrv(p1)+θ(p1), as shown

in Fig. 2(a), its delivery delay would be

D(p2) = TBEACON,i − Tarrv(p2)

= Tarrv(p1) + (1 + µ)θ(p1) − Tarrv(p2)

> Tarrv(p1) + (1 + µ)θ(p1) − (Tarrv(p1) + θ(p1))

= µθ(p1) > µmax{θ(p2), Tarrv(p2) − Tarrv(p1)}.

(10)

This means that, for any packet that arrives within the

estimated mean packet arrival interval, the delivery delay

cannot be bounded under the desired limit. As a result, we

may not be able to bound the average delivery delay (over

all packets) under certain packet arrival distributions. One

way to deal with this potential issue is to employ a more

conservative approach by replacing θ with (θ − mδ) in

Eq. (6):

Iallow(p1) = (1 + µ)(θ(p1) −mδ(p1)) −D(p1), (11)

where m > 1 and larger m values may be used for more

stringent delay requirements. This way, fewer packets

would experience higher delay, and thus the average

delivery delay may be bounded under the limit.

B. Sender Behavior

The operation flowchart of a CyMAC sender is shown

in Fig. 3. In CyMAC, the sender acts in a leading role.

It schedules the rendezvous times with each receiver by

calculating Iallow and piggybacks such information in the

packet transmissions to the receiver. For receiver j, the sender

maintains two sets of packets (as listed in Table I): (i) DONEj
– the set of packets that have failed all transmission attempts

and arrive after the last successfully-delivered packet, which

itself is also included in the set; and (ii) WAITj – the set of

packets waiting to be transmitted. It also maintains TLISTEN,j –

the next listen time for beacons from receiver j. At TLISTEN,j ,

the sender forwards all the packets in WAITj to receiver j
with Iallow information piggybacked in each packet.

1) Rendezvous between Sender and Receiver: As shown

in Fig. 3, there are three different cases when the sender

schedules its next listen time differently. CyMAC is able

to guarantee rendezvous between sender and receiver in all

three cases, which will be explained with the help of example

scenarios given in Fig. 4.

N

Y

At time TLISTEN,j, transmitter checks WAITj

WAITj == φ ?

“Case II”:

- For each packet y DONEj,

if TLISTEN,j == TSCHD(y), TSCHD(y) = 

TSCHD(y) + (TLISTEN-Tarrv(y)-D(y))

Y

N

Turns on the radio

Beacon received?

x = arg min y WAITj Tarrv(y)

retry_count = 0

D(x) = TLISTEN,j - Tarrv(x)

Calculates Iallow(x)

Sends x with Iallow(x) piggybacked

ACK received? retry_count ++

retry_count c?

“Case I”:

- TSCHD(x) = TBEACON carried in the ACK

“Case III”:

- TSCHD(x) = TLISTEN,j + Iallow(x)

- For each packet y DONEj,

if TLISTEN,j == TSCHD(y), TSCHD(y) = 

TSCHD(y) + (TLISTEN-Tarrv(y)-D(y))
WAITj = WAITj – {x}

DONEj = DONEj {x}

WAITj == φ ? TLISTEN = min y DONEj TSCHD(y)

Turns off the radio

Turns off the radio

N

Y

N

Y

YN

TLISTEN,j = min y DONEj TSCHD(y)

DONEj = φ

Waits for Beacon

Fig. 3. Operation flowchart of a CyMAC sender with respect to receiver j.

• Case I: after a successful data packet delivery. In this

case, the sender sets the next listen time to TBEACON that

is carried in the ACK. This case is illustrated in Fig. 4(a)

where we assume that there is only one sender (sender i)
and one receiver (receiver j). We can see that, after packet

p1 is delivered successfully at time t0, both sender and

receiver schedule to wake up together at TSCHD(p1) =
TBEACON,i , t1.

• Case II: when there are no data packets to be transmitted.

Despite that there is no information exchange between

sender and receiver in this case, CyMAC can still guar-

antee that sender and receiver wake up together at future

time instances. Fig. 4(b) shows an example scenario when

there are no data packets to be transmitted at time t1.

Sender i schedules the next listen time to (according to

Case II in Fig. 3 Flowchart)

T ′

SCHD(p1) = t1 + µ(t1 − Tarrv(p1) −D(p1)), (12)

and receiver j schedules the next beacon time to (accord-

ing to Box I in Fig. 1 Flowchart)

T ′

BEACON,i = t1 + µ(t1 − TLAST,i). (13)

These two time instances are indeed the same, mean-
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(t1-Tarrv(p1)-D(p1))

Iallow(p2)

Iallow(p2)

Iallow(p2)

(t2-TLAST,i)

T’’BEACON,i

(t2-Tarrv(p1)-D(p1))

(t1-TLAST,i)

T’BEACON,iTLAST,i TBEACON,i

t1

TBEACON,iTLAST,i

t0

D(p1)

Tarrv(p1)

Sender i

Receiver j
Time

TSCHD(p1)

D(p1)

Tarrv(p1)

Sender i

Receiver j
Time

T’SCHD(p1)TSCHD(p1)

(a) At time t0, packet p1 is delivered successfully 

from sender i to receiver j.

(b) At time t1, sender i and receiver j wake up together but there is no information 

exchange between them since there are no data packets to be transmitted.

T’BEACON,iTLAST,i TBEACON,i

t2

D(p1)

Tarrv(p1)

Sender i

Receiver j
Time

T’SCHD(p1)TSCHD(p1) Tarrv(p2) T’’SCHD(p1) TSCHD(p2)

(c) Packet p2 arrives at sender i before time t2. However, sender i fails to deliver p2 to 

receiver j due to loss of p2.

D(p2)

T’’’BEACON,i

(t2-Tarrv(p1)-D(p1))

TLAST,i

t2

D(p1)

Tarrv(p1)

Sender i

Receiver j
Time

T’SCHD(p1)TSCHD(p1) Tarrv(p2) T’’SCHD(p1) TSCHD(p2)

(d) Same scenario as (c) except that the failure was due to loss of ACK.

D(p2)

: Data received

: Data not received

: Beacon not received

: Beacon received

: Beacon received but no ACK

: Beacon and ACK received

: Scheduled handshake time

Fig. 4. Example scenarios to illustrate how CyMAC guarantees rendezvous
between sender and receiver.

ing that sender and receiver will wake up together at

T ′
SCHD(p1) = T ′

BEACON,i , t2.

• Case III: after a failed data packet delivery. In the design,

the sender assumes the data packet delivery is failed after

retrying for c times (c is a configurable system parameter

as the retry count threshold) without receiving an ACK

from the receiver. This is the most complicated case

as the sender is unsure whether the failure was due to

loss of data packet or loss of ACK, when the receiver

behaves differently. These two scenarios are illustrated in

Figs. 4(c) and (d), where at time t2 the receiver schedules

the next beacon time to (loss of data packet; Box I in

Fig. 1 Flowchart)

T ′′

BEACON,i = t2 + µ(t2 − TLAST,i), (14)

and (loss of ACK; Box II in Fig. 1 Flowchart)

T ′′′

BEACON,i = t2 + Iallow(p2), (15)

respectively. In order to guarantee rendezvous between

sender and receiver, CyMAC requires the sender to wake

up at both time instances. To do so, the sender updates

TSCHD for all packets in set DONE and listen at all the

updated TSCHD time instances. In the example scenarios

shown in Figs. 4(c) and (d), since sender i now has

DONEj = {p1, p2}, it will listen at both

T ′′

SCHD(p1) = t2 + µ(t2 − Tarrv(p1) −D(p1)) (16)

and
T ′

SCHD(p2) = t2 + Iallow(p2), (17)

which match T ′′
BEACON,i and T ′′′

BEACON,i, respectively.

2) Minimal Idle Listening Time: A major difference be-

tween CyMAC and RI-MAC is how a sender behaves upon

a data packet arrival. In RI-MAC, a sender turns on the

radio immediately after a data packet arrives, idly listening

till it receives a beacon from the receiver. In comparison, a

CyMAC sender only turns on the radio at scheduled listen

times for possible interactions with receivers. So if a data

packet arrives before the next scheduled listen time, the packet

will be inserted into set WAIT but the radio won’t be turned

on till the scheduled listen time. This way, the idle listening

time is reduced drastically.
3) Dynamic Duty Cycling: Another unique feature of Cy-

MAC is that sensor nodes adjust their duty cycles dynamically

to the varying traffic condition. When the traffic is light, sensor

nodes sleep more and send less beacons to conserve more

energy, while when the traffic is heavy, sensor nodes wake up

more often to interact with each other so as to provide the

desired delay bound.
Fig. 5 shows the behavior of CyMAC nodes when the

network turns idle (i.e., no more new data packets) after a

packet is delivered successfully at TLAST. As shown in the

figure, the k-th (k > 1) rendezvous time after TLAST will be

scheduled at TLAST + (1 + µ)i−1φ, according to Case II in

the sender flowchart and Box I in the receiver flowchart. For

example, if TLAST = 0 second, φ = 1 second and µ = 50%, the

future rendezvous times will be at approximately {1, 1.5, 2.3,

3.4, 5.1, 7.6, 11.4, 17.1, · · · } seconds. This procedure goes on

till new data packets arrive which will direct CyMAC nodes

to reset their duty cycles based on their updated estimates of

the data traffic. This shows that CyMAC nodes are able to

adjust quickly to the varying traffic condition and operate in

ultra low duty cycles when the traffic is light.
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Fig. 5. Dynamic duty cycling with CyMAC.

C. Effects of Time Asynchrony

In a practical sensor network, sender and receiver nodes

are inevitably asynchronous. Typically, clocks of sensor nodes

differ for two reasons: clock skew that is simply the initial dif-

ference between clocks, and clock drift that refers to different
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clocks counting time at slightly different rates, which results

in varying clock skews over time. In general, clock asynchrony

between sender and receiver nodes can be described with the

following equation:

tr = a× ts + b, (18)

where ts is the time instance at the sender, tr is the corre-

sponding time instance at the receiver, and a and b represent

the clock drift and the clock skew, respectively. In this section,

we analyze the effects of clock asynchrony on CyMAC

performance, and discuss how we enhance CyMAC to deal

with these issues.
1) a < 1: In this case, the sender clock counts time at a

faster rate than the receiver clock, as shown in Fig. 6(a). After

the sender delivers a packet p1 successfully to the receiver,

both sender and receiver know that Tsent(p1) on the sender

clock corresponds to TLAST on the receiver clock, and schedule

the next rendezvous time to Iallow(p1) time later. Since the

sender clock counts faster, when the sender wakes up at

TSCHD(p1) to listen for beacon from the receiver, the receiver

won’t wake up till Iallow(p1)(
1
a − 1) time later. As a result, an

extra delay is introduced to the delivery of packet p2:

D(p2) = Iallow(p1)
1

a
+D(p1) − (Tarrv(p2) − Tarrv(p1)). (19)

When the system stabilizes, D(p1) = D(p2) , D and

Tarrv(p2) − Tarrv(p1) = θ(p1) , θ. Plugging in Eq. (6), we

have
D = ((1 + µ)θ −D)

1

a
+D − θ

=⇒ D = (µ+ 1 − a)θ.
(20)

This means that an extra delay of (1− a)θ has been added to

the packet delivery delay.

: Scheduled handshake time

TBEACONTLAST
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Sender
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Time
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: Data received

: Beacon not received
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: Data not received
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Tsent(p1)

(a) When the sender clock counts time faster than the receiver clock (i.e., a < 1).
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(b) When the sender clock counts time slower than the receiver clock (i.e., a > 1).

Fig. 6. Effects of time asynchrony on CyMAC performance.

2) a > 1: In this case, the sender clock counts time at a

slower rate than the receiver clock, as shown in Fig. 6(b). After

the sender delivers a packet p1 successfully to the receiver,

both sender and receiver schedule the next rendezvous time

to Iallow(p1) time later. Since the sender clock counts slower,

when the sender wakes up at TSCHD(p1) to listen for a beacon

from the receiver, the receiver has already finished its beacon

transmission. As a result, the sender has to remain awake to

wait for the next beacon. We have:

D(p2) = (1 + µ)Iallow(p1)
1

a
+D(p1) − (Tarrv(p2) − Tarrv(p1)). (21)

When the system stabilizes, D(p1) = D(p2) , D and

Tarrv(p2) − Tarrv(p1) = θ(p1) , θ. Plugging in Eq. (6), we

have
D = (1 + µ)((1 + µ)θ −D)

1

a
+D − θ

=⇒ D =

(

µ + 1 −
a

1 + µ

)

θ.

(22)

This means that an extra delay of (1− a
1+µ )θ has been added

to the packet delivery delay.

To ameliorate the effects of time asynchrony, we have

employed the following schemes in CyMAC:

• To guarantee a relative delay bound of µ, CyMAC does it

more conservatively by replacing µ with µ∗ = µ−|1− â|
as the target delay bound in sensor nodes’ operations,

where â is the upper limit of clock drift between sensor

nodes. When |1−â| < µ, CyMAC works fine. However, if

µ 6 |1− â|, CyMAC won’t be able to provide the desired

delay bound. Fortunately, this situation rarely occurs in

practice as it makes little sense to ask a sensor network to

provide a delay bound that is even tighter than the degree

of clock asynchrony between sensor nodes.

• In CyMAC, the sender wakes up a bit earlier prior to the

scheduled listen time to wait for beacons. Specifically, if

the time between the previous listen time and the next

listen time is ψ seconds, the sender will wake up at
(

µψ
2+2µ

)

prior to the next listen time.

With these two enhancements, we have proved that time

asynchrony can be dealt with effectively. Please refer to [16]

for proofs which are omitted due to space limitation.

D. CyMAC Implementation in TinyOS

We implement CyMAC within the UPMA framework [17]

in TinyOS, as illustrated in Fig. 7. The generic UPMA

framework includes the Radio Core as its lower layer to handle

packet transmission, reception, backoff control, etc., and the

MacC component as its upper layer to contain the modules

implementing any particular MAC protocol.

SenderC ListenerC

CyMACSchedulerC

MacControlC
AsyncSend

AsyncSend

AsyncReceive

AsyncReceive

AsyncReceive

AsyncSend

AsyncSend

AsyncSend

CyMAC Adaption Code

Radio Power 

Control

Radio Power Control

MacC

Radio Core

AsyncReceive

AsyncReceive

SplitControl

Fig. 7. Implementation of CyMAC within the UPMA framework.

To implement CyMAC, we develop CyMACSchedulerC and

CyMAC Adaption Code, which are parts of the MacC and
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Radio Core, respectively. CyMACSchedulerC performs the

main functionalities of CyMAC, including receiver beacon

generation, sender wakeup, computation of Iallow and radio

power control. Similar to the Adaption Code in the implemen-

tation of RI-MAC, the CyMAC Adaption Code is mainly for

checking CCA and controlling backoff. The difference lies in

that, the CyMAC Adaption Code does not support preloading

data packets into the CC2420 TX buffer for the following

reason. A data packet in CyMAC contains the Iallow value

which is computed immediately before the packet is ready to

send, and thus the packet cannot be loaded into the buffer

earlier. Because of no packet preloading, the processing time

for packet transmission becomes longer in CyMAC than in RI-

MAC, but the fresh Iallow value carried by the packets helps

to reduce both energy consumption and delay in practice. In

our implementation, Iallow is calculated according to Eq. (11)

with m = 1 and has a minimum value of 10ms.
Iallow is added to the radio message header of each data

packet and TBEACON is added to each ACK packet, to en-

able senders and receivers exchange rendezvous information.

Meanwhile, the hardware ACK and the address recognition

function are disabled to allow the CyMAC modules to process

ACK packets, just like in RI-MAC.
CyMAC requires a node to use some memory space to

maintain state information about its senders and receivers.

Particularly, 9 bytes RAM space is needed for each sender and

25 bytes RAM space is needed for each receiver. A sample

TinyOS program is developed to use the UPMA framework

which contains CyMAC. The program consumes about 24K
bytes ROM and 800 bytes RAM space on each MICAz mote,

where each mote maintains the state information for 10 senders

and 5 receivers. Thus, the memory consumption of CyMAC

is comparable to RI-MAC and other existing MAC protocols.

III. PERFORMANCE EVALUATION

Testbed-based experiment and ns-2 based simulation are

conducted to evaluate the performance of CyMAC and com-

pare it with RI-MAC, in terms of relative end-to-end delay

and duty cycle.

A. Testbed Evaluation

We set up a testbed system composed of 9 MicaZ motes,

forming a line or a star topology as illustrated in Fig. 8. For

each topology, CyMAC or RI-MAC is run respectively in the

experiment. The average beacon interval in RI-MAC is set to

one second. The only parameter for CyMAC is µ, the desired

relative delay bound for a single hop. Depending on the desired

end-to-end relative delay bound µe2e, µ is set to (1+µe2e)
1/ξ−

1 where ξ is the hop-count diameter of the network, following

the definition in Section II-A2.

1

2 3

4

5

67

8

00 1 2 3 4 5 6 7 8

Fig. 8. The line and star topologies of the testbed system.

1) Line Topology: In each experiment, there is a single data

packet flow starting from node 1, 2, 4 or 8 to sink node 0 with

flow length of 1, 2, 4 or 8 hops, respectively. The performances

of CyMAC and RI-MAC are compared with varying flow

length, data packet generation interval τ and µe2e.
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Fig. 9. Comparison of CyMAC and RI-MAC with the line topology as
the flow length and the end-to-end relative delay bound µe2e vary. For each
flow, data packets are generated at the source node at an average interval of
τ = 10s with 10% variance. µe2e is 0.2 or 0.5.

With varying flow length and µe2e, the duty cycles of

CyMAC and RI-MAC are compared in Fig. 9(a). In RI-MAC,

as each node sends a beacon every one second regardless of

the traffic condition, and each sender needs to idly listen for

0.5 seconds (on average) to send a packet, a lot of energy is

consumed. In contrast, CyMAC establishes rendezvous times

between neighbors adaptively to the packet arrival interval;

hence, it saves much idle listening and has significantly lower

duty cycle than RI-MAC. Fig. 9(b) shows the relative delay

with CyMAC and RI-MAC. CyMAC provides the desired

delay bound as expected, while the end-to-end delay in RI-

MAC increases linearly with the flow length. When the flow

length is large, RI-MAC cannot provide the desired delay

bound even with a higher duty cycle than CyMAC.
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Fig. 10. Comparison of CyMAC and RI-MAC with the line topology as the
desired end-to-end relative delay bound µe2e and the average packet generation
interval τ vary. The flow length is fixed at 8 hops.

CyMAC and RI-MAC are compared in Fig. 10 with varying

µe2e and τ . As µe2e increases, the relative delay achieved by

CyMAC increases accordingly and the average duty cycle of

sensor nodes decreases. This is because CyMAC attempts to

schedule the rendezvous times between neighbor nodes in the

way that the duty cycle of the nodes is as low as possible

provided that the desired delay bound is guaranteed. However,

RI-MAC does not change its beacon interval as µe2e changes,

and therefore keeps the same duty cycle and relative delay.

Similar to the reasons explained for Fig. 9, RI-MAC has higher

duty cycle and relative delay than CyMAC.
Fig. 11 demonstrates a trace of instantaneous changes in

duty cycle and relative delay as τ varies over time. Each delay

1320



 0

 5

 10

 15

 20

 0  500  1000  1500  2000  2500  3000  3500
d

a
ta

 i
n

te
rv

a
l 
(s

)
 0

 5

 10

 15

 20

 0  500  1000  1500  2000  2500  3000  3500
d

a
ta

 i
n

te
rv

a
l 
(s

)

 0

 20

 40

 60

 0  500  1000  1500  2000  2500  3000  3500

re
la

ti
v
e

 d
e

la
y
 (

%
)

CyMAC µe2e=0.2

RI-MAC

 0

 20

 40

 60

 0  500  1000  1500  2000  2500  3000  3500

re
la

ti
v
e

 d
e

la
y
 (

%
)

CyMAC µe2e=0.2

RI-MAC

 0

 5

 10

 15

 20

 0  500  1000  1500  2000  2500  3000  3500

d
u

ty
 c

y
c
le

 (
%

)

Time(s)

CyMAC µe2e=0.2

RI-MAC

 0

 5

 10

 15

 20

 0  500  1000  1500  2000  2500  3000  3500

d
u

ty
 c

y
c
le

 (
%

)

Time(s)

CyMAC µe2e=0.2

RI-MAC

Fig. 11. A trace demonstrates the instantaneous changes in duty cycle and
relative delay as the packet generation interval τ varies over time. The flow
length is fixed at 4 hops. µe2e is fixed to 0.2.

or duty cycle point in the figure represents the measurement

during a 20s period ending at the corresponding time instance.

As we can see, CyMAC always guarantees the desired end-

to-end delay bound except for a short duration when τ drops

suddenly from 20s to 10s around time 2500s. In this case,

some packets (with τ = 10s) are queued and their end-to-

end delay may exceed the desired bound. The instantaneous

duty cycles in this duration also increase because packets

need to be exchanged in a higher frequency in order to reach

new rendezvous times. Nevertheless, CyMAC can adapt to the

traffic changes and re-stabilize the system quickly. Comparing

with CyMAC, RI-MAC does not adapt to the traffic changes

and has higher duty cycle and relative delay during most of

the time.

2) Star Topology: We deploy the testbed network in a star

topology, as illustrated in Fig. 8, where node 0 is the sink and

other nodes can be data sources. We vary the number of source

nodes and the packet generation interval τ in the experiment.
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Fig. 12. Comparison of CyMAC and RI-MAC with the star topology as the
number of source nodes and the packet generation interval τ at each source
node vary. µe2e is 0.1.

Results are shown in Fig. 12. As a receiver in CyMAC

sends out beacons at the scheduled beacon times to each

of its senders, the time spent on sending beacons increases

with the number of senders and with τ . A receiver in RI-

MAC, on the other hand, sends out beacons at a constant rate

regardless of the number of senders or τ . Also considering

that a receiver in CyMAC and RI-MAC spends similar time

for packet reception, the overall duty cycle of a receiver in

CyMAC has higher duty cycle than its counterpart in RI-MAC

when the number of senders is large and/or τ is small, as

illustrated in Fig. 12(a). In this case, however, a sender in

CyMAC has a much lower duty cycle than its counterpart in

RI-MAC, as illustrated in Fig. 12(b), because CyMAC can

significantly reduce the idle listening time for senders through

setting up rendezvous times between sender and receiver.
Fig. 12(c) demonstrates that CyMAC always achieves the

desired relative delay, regardless of the number of source nodes

or τ . RI-MAC limits the average absolute delay to half of

the beacon interval, and thus the relative delay increases as

τ decreases. Therefore, the relative delay in RI-MAC is not

affected much by the number of source nodes but by τ .

B. Simulation Evaluation

CyMAC is evaluated in large-scale networks with the ns-2

simulator. Two scenarios are considered: a grid sensor network

where one node is the sink and every other node is a data

source; a random mesh network with multiple data flows.
1) Grid Topology: A total of 49 sensor nodes are deployed

to form a 7×7 grid where nearby nodes are 70 meters apart.

The node at the center is the sink while every other node is a

data source. CyMAC and RI-MAC are run respectively in the

network to compare their performances. The packet generation

interval τ at each source node varies from 5 seconds to 80

seconds, and the desired end-to-end relative delay bound µe2e

is set to 0.2 or 0.4.
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Fig. 13. Comparison of CyMAC and RI-MAC with the grid topology as the
packet generation interval τ at each source node and the desired end-to-end
relative delay bound µe2e vary.

As showed in Fig. 13, CyMAC always has lower duty

cycle than RI-MAC. When the network traffic is heavy (e.g.,

τ = 5s), a node in CyMAC may spend more time sending

beacons to signal its senders than its counterpart in RI-MAC,

but it spends much less time on idle listening for each packet

that it sends; as the result of these two factors, CyMAC has

lower duty cycle than RI-MAC, which is demonstrated by

the simulation results. When the network traffic is light (e.g.,

τ = 80s), CyMAC also has lower duty cycle than RI-MAC

because a node in CyMAC has less beacons to send due to the

larger τ , but a node in RI-MAC still needs to send beacons at

the same rate regardless of the change in traffic condition.
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Fig. 13(b) depicts the changes of the end-to-end relative

delay as τ varies. RI-MAC’s absolute end-to-end delay is not

affected much by τ because it is mainly determined by the

beacon interval and the network hop-count diameter. Hence,

as τ decreases, its relative delay, which is the ratio of the

absolute delay to τ , increases accordingly. On the other hand,

CyMAC can adapt the rendezvous times between nodes to the

change of τ and maintain a stable relative delay below the

desired bound.
2) Mesh Topology with Multiple Flows: A total of 49 nodes

form a mesh topology with five data flows passing through

25 nodes, as shown in Fig. 14. In this scenario, different

flows have different sources, destinations, flow lengths and

data generation intervals. They co-exist in the network and

affect each other, which represents a more realistic situation

than the line, star or grid topology.
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Flow1

Flow2
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Flow5

Fig. 14. Mesh topology with multiple flows. A total of 49 nodes are in the
network and five flows pass 25 nodes. The numbers of nodes on these flows
are 4, 7, 8, 5 and 6, respectively. The data generation intervals of the flows
are 20s, 10s, 30s, 50s and 40s, respectively.

Fig. 15 shows that CyMAC has lower duty cycle than RI-

MAC for nodes on every flow and all flows can achieve

the desired delay bound. As the flow length is different in

each flow and the per-hop delay bound is conservatively

selected based on the network hop-count diameter, shorter

flows achieve lower delay than longer ones. For example,

flow 1 has a relative delay of 0.072, flow 3 has a relative delay

of 0.207, and their flow lengths are 4 and 8 respectively.
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Fig. 15. Comparison of CyMAC and RI-MAC with the mesh topology. The
desired end-to-end relative delay bound is µe2e = 0.2.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we propose a new receiver-initiated sensor

MAC protocol called CyMAC, and implement it in both

TinyOS and the ns-2 simulator. Theoretical analysis and in-

depth experiments/simulations demonstrate that CyMAC guar-

antees the desired delay bound for data delivery services under

various traffic conditions. It yields a lower duty cycle than RI-

MAC in most cases except when the required delay bound is

very tight. In this case, CyMAC can still provide the delay

bound guarantee at the cost of having a slightly higher duty

cycle than RI-MAC. In addition, CyMAC can tolerate time

asynchrony between sensor nodes.
Future work will be in the following directions: (1) CyMAC

will be extended to support not only unicast but also multicast

data services. (2) The issues and strategies for integrating

CyMAC with data aggregation, a fundamental primitive for

energy efficiency in sensor networks, will be studied. (3)

The current CyMAC design assumes all data flows have the

same desired delay bound. In practice, however, different data

flows may belong to different applications and thus may have

different delay requirements. CyMAC will be extended to

guarantee per-flow delay bound in a scalable manner. (4)

CyMAC will be enhanced to support highly irregular and

dynamic traffic conditions where the packet arrival interval

is unstable. One possible approach is as follows. The current

online traffic estimation scheme is enhanced so that highly

irregular and dynamic traffic conditions could be identified.

Once these conditions appear, CyMAC reduces to a RI-MAC

type protocol with an appropriately chosen beacon interval,

since it could be very expensive to provide any types of delay

guarantee under these situations.
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