
A Light-Weight Solution to Preservation of Access
Pattern Privacy in Un-trusted Clouds

Ka Yang, Jinsheng Zhang, Wensheng Zhang, and Daji Qiao

Iowa State University, Ames, Iowa 50010, USA
{yangka,alexzjs,wzhang,daji}@iastate.edu

Abstract. Cloud computing is a new computing paradigm that is gaining in-
creased popularity. More and more sensitive user data are stored in the cloud.
The privacy of users’ access pattern to the data should be protected to prevent
un-trusted cloud servers from inferring users’ private information or launching
stealthy attacks. Meanwhile, the privacy protection schemes should be efficient
as cloud users often use thin client devices to access the cloud. In this paper,
we propose a lightweight scheme to protect the privacy of data access pattern.
Comparing with existing state-of-the-art solutions, our scheme incurs less com-
munication and computational overhead, requires significantly less storage space
at the cloud user, while consuming similar storage space at the cloud server. Rig-
orous proofs and extensive evaluations have been conducted to demonstrate that
the proposed scheme can hide the data access pattern effectively in the long run
after a reasonable number of accesses have been made.

1 Introduction

Cloud computing [1, 12] enables enterprise and individual users to enjoy flexible, on-
demand and high-quality services such as huge-volume data storage and processing,
without the need to invest on expensive infrastructure, platform or maintenance. As
more and more sensitive user data (e.g., financial records, health information, etc.) have
been centralized into the cloud, cloud computing is facing great privacy and security
challenges that may impede its fast growth and increased adoption if not well addressed.
Rising to the challenges, researchers have proposed many schemes [7,18,23] to protect
confidentiality and integrity of cloud data. Unfortunately, limited research has been
conducted on the protection of users’ privacy during their access to the cloud, such as
the access frequency to each data item and the linkage between accesses of data items.
Leakage of such access pattern information may enable potential privacy attacks such as
focused attacks against selected data items. Cloud server may also infer a cloud user’s
activity pattern or private interest by tracking the user’s access to a particular data item.

To strictly protect the privacy of data access pattern, the intention of every data ac-
cess operation should be hidden so that observers of the operations cannot gain any
meaningful information. Conforming to this strict requirement of access pattern pri-
vacy, Chor et al. [4], Ostrovsky et al. [14] and Itkis [10] introduced the notions of the
private information retrieval (PIR) in an information theoretical setting and the compu-
tational PIR by restricting the database to perform only polynomial-time computations.
Fully implementing the PIR notion is, however, expensive. As shown by Sion et al. [15],

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 528–547, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Light-Weight Solution to Preservation of Access Pattern Privacy 529

deployment of any single-server PIR protocol is not necessarily more efficient than a
simple transfer of the entire database. Another approach to the strict preservation of data
access pattern privacy is based on the notion of oblivious RAM (ORAM) [9]. In a latest
ORAM implementation [20], about log n data items of the database should be scram-
bled every time after a single data item has been requested, where n is the total number
of data items in the database. Let τ denote the size of a data item in bits. This ORAM
scheme incurs a communication and computational complexity of O(log n·log log n·τ)
and requires O(

√
n · τ) temporary user storage. The cost of this scheme is still rather

expensive especially when the data are accessed frequently.
Although strict protection of data access pattern privacy is attractive, less strict pro-

tection, such as protecting the privacy of long-term access pattern, is also very useful in
practice. For example, a malicious cloud server may use the statistical data access pat-
tern of a user to infer the user’s private information or conduct stealthy attacks. More-
over, being lightweight is also highly desired by users in cloud computing, as many
of them often access the cloud with thin client devices such as smartphones. Based on
these considerations, we propose a lightweight scheme to preserve the privacy of long-
term data access pattern in this paper. The outline of the proposed scheme is as follows.
Every time when a data item is needed by a user, (i) the user retrieves the desired data
item together with additional dummy data items to hide the actual retrieval target; and
(ii) the retrieved data items are re-encrypted and re-positioned before being stored back
to the server to perturb the connections between data items and their storage locations
at the server. The scheme records the storage locations of data items in index files,
which are stored in a pyramid-like hierarchical structure at the cloud server to reduce
communication, computational and storage overheads. Similar to data items, the access
pattern to index files is also protected with additional dummies and re-positioning of the
files after access. A set of delicately designed rules are used in the selection of dummy
data items and index files as well as the repositioning of the files, which ensures that
the connections between data items and their storage locations are reshuffled gradually,
become more and more difficult to trace as the number of accesses increases, and even-
tually become fully un-trackable. Rigorous proofs and extensive evaluations have been
conducted to demonstrate that the proposed scheme can hide the data access pattern in
the long run, and the number of accesses required to preserve the access pattern privacy
is reasonable in many situations.

The rest of the paper is organized as follows. Section 2 describes the system models.
The proposed scheme is elaborated in Section 3, and Section 4 analyzes its security and
overhead performances. Section 5 reports the evaluation results and Section 6 discusses
the related work. Finally, Section 7 concludes the paper.

2 Models and Assumptions

2.1 System Model

We consider a basic cloud system with a cloud server and a single cloud user. The
cloud user stores its sensitive data on the cloud server, which in turn provides an online
interface for the cloud user to access the outsourced data. Later on, when the need for
a data item arises, the cloud user requests it from the cloud server, updates the data

530 K. Yang et al.

item after usage, and then uploads the updated data item back to the server. Similar
to [20,9], we assume that all the data items stored at the cloud server have the same size
so the server cannot identify a data item from its size. In practice, this can be achieved
conveniently by appending padding bits to short data items or dividing large data items
into smaller ones.

2.2 Security Model

We assume that a cloud server is curious about the user’s private information and may
launch malicious attacks. Specifically, it may be interested in obtaining the user’s data
access pattern over the long term, which primarily includes the following information:
which data items that have been requested by the user and the number of times that a
particular data item has been requested by the user.

If the access pattern information is obtained, the cloud server may be able to launch
various attacks. For example, the cloud server may attempt to infer the user’s activity
pattern or private interest via tracking the user’s access to some particular data items.
The cloud server may also launch focused attacks towards user’s data that are accessed
with very high frequency, or stealthily delete data that are never accessed to save its
storage and maintenance costs without being noticed by the user.

As for the cloud user, we assume that it has a primitive encryption function that
generates different cipher-texts over different input, and the cloud server does not have
non-negligible advantage over the cloud user at determining whether a pair of encrypted
items of the same length represent the same data item. We assume that data confidential-
ity and integrity are protected using existing techniques and the communication chan-
nel between the cloud user and the cloud server is secured using mechanisms such as
SSL/IPSec. We do not consider denial of service attacks or timing attacks as they can
be addressed independently from this work.

2.3 Design Goal

Our main design goal is to develop a lightweight solution to prevent the cloud server
from knowing the cloud user’s long-term access pattern to the data stored at the cloud
server, while allowing the user to access the outsourced data with low communication
and computational overhead. Specifically, we preserve the access pattern privacy by
breaking the connections between the data items and their storage locations gradually.

3 The Proposed Scheme

3.1 System Setup

Before describing our proposed scheme in detail, we first explain the system setup.

Hierarchical Storage Structure at the Cloud Server. We study a system where a
cloud user stores n distinct data items (denoted by di, i = 1, · · · , n) at a cloud server.
All data items are encrypted with the user’s secret key before uploading. In addition to
data items, the cloud server stores a hierarchy of index files with the following features:

A Light-Weight Solution to Preservation of Access Pattern Privacy 531

ds

68

56

7

5

0

Location

Data

Location

File

Location

File

Location

File 1
TI

Level t

Level 1

...

Level T

Level 0

Location

File
Level T-1

1 ... m
... 1

(, 1)
T -
f s T -I

...

...

8Location

File

Level t-1

1 n/mt

...
13
tI 2

tI

...

...

...

,()
t
f s tI

...

1
1

30
t-I ...

...

1
7
T -I 1

3
T -I Location

...

...
,

1
[()-1] +1
t -
f s t mI × ,

1
[()-1] +2
t -
f s t mI × ,

1
(-1)
t -
f s tI ...

...
,

1
()
t -
f s t mI ×

,
1

[()-1] +2
t -
f s t mI × ,

1
(-1)
t -
f s tI 1

()
t -
f s,t mI × ,

1
[()-1] +1
t -
f s t mI ×

n/mt-1

1
1
49I ,

1
(1)f sI

n/m...

...

...

...

1

d8

n

1
26
t-I

1
74I

2
1
5I

n/m-1
1
3I

2

d91

...

... d54

n-1

d104

...

...

6 24 106

106 6 247

Cloud Server

Cloud User: to access ds, user retrieves , , ... , , and ds iteratively in T+1 queries
Q

ue
ry

R
etrieve

1
TI 1

(s, 1)
T -
f T -I 1

(s,1)fI

Content of :

...

...

...

...

...

...

,()
t
f s tI

File

Fig. 1. System setup. Data items and index files form a pyramid-like hierarchical storage structure
at the cloud server. Each index file records the storage locations of m index files at its next lower
level. For example, the content of It

f(s,t) is shown in the callout box, and the m level-(t − 1)

index files associated with It
f(s,t) are shown as bold boxes in the figure. Here, f(s, t) =

⌈
s

mt

⌉
.

To obatin data item ds, the cloud user performs a sequence of queries iteratively in a top-down
manner, to obtain T index files (marked as gray boxes), one at each level of the hierarchy.

– As shown in Fig. 1, there is a total of T = �logm n� � 1 levels of index files, where
m > 1 is a design parameter. In Section 4.2, we analyze the relation between m and
the communication, computational and storage overheads incurred by our solution.
To simplify the presentation, we assume that logm n is an integer in the rest of the
paper.

– At level t (t = 1, · · · , T), there are n
mt index files (denoted by It

j , j = 1, · · · , n
mt).

So the total number of index files in the hierarchy is
T∑

t=1

n
mt = n−1

m−1 .

– Each index file records the storage locations of m index files at its next lower level.
Specifically, It

j at level t contains the storage location information of the following
index files at level (t − 1): It−1

(j−1)m+1, I
t−1
(j−1)m+2, · · · , It−1

jm , as illustrated in the
callout box in Fig. 1.

– There is only a single index file at the top level (i.e., level T): IT
1 .

– Data items form the bottom level (i.e., level 0) of the hierarchy.
– We assume that the files at different levels of the hierarchy are stored at non-

overlapping storage spaces.

Note that, as shown in Fig. 1, there is no fixed order-correspondence between an index
file (or a data item) and its storage location. This is due to the design nature of our
proposed scheme, whose key idea is to randomize the storage locations of index files
and data items after each access. Details of the scheme will be discussed in Section 3.2.

532 K. Yang et al.

Iterative Query Process by the Cloud User. With such a pyramid-like hierarchical
storage structure, we have the following observation about the relation between a data
item and its index files: the storage location of the data item ds is recorded in the level-1
index file I1

f(s,1), whose storage location information is in turn recorded in the level-

2 index file I2
f(s,2), so on and so forth, till the top-level index file IT

1 ; here, f(s, t) is

defined as f(s, t) =
⌈

s
mt

⌉
. This relation is illustrated in Fig. 1 as a linked chain of gray

boxes from top level T to bottom level 0.
Based on the above observation, we know that the user can obtain the desired data

item ds by performing a sequence of queries to obtain these T index files in the chain:
IT
1 , IT−1

f(s,T−1), · · · , I1
f(s,1), in a top-down manner through the hierarchy; once I1

f(s,1)

is obtained, the user gets to know the storage location of ds and can then issue the
final query to obtain the data item. After the access, the data items and index files are
updated, re-encrypted and uploaded back to the server.

We assume that the user requests the data items in rounds. To simplify the presenta-
tion, we assume that the user requests a single data item in each round. The proposed
scheme may be extended to support requests of multiple data items in each round with-
out much difficulty. In the following section, we explain our proposed scheme in detail.
Table 1 lists the notations to be used in the rest of the paper.

Table 1. Notations Used in the Paper

Notation Description

n the total number of data items
D the set of all data item IDs
m the number of storage locations recorded in an index file
It

j the j-th index file at level t of the hierarchy
ξ(j, t) the set of IDs of files whose storage locations are recorded in the level-t index file of ID j

Lt the set of storage locations of level-t files
f(i, t) the ID of the index file that corresponds to data item di at level t

Qt
pre(t � 1) the set of IDs and locations of level-t index files accessed in the previous round
Qt

cur(t � 1) the set of IDs and locations of level-t index files to be accessed in the current round
Q0

pre the set of IDs and locations of data items accessed in the previous round
Q0

cur the set of IDs and locations of data items to be accessed in the current round

3.2 Scheme Description

Scheme Overview. Our proposed scheme is executed every time when the cloud user
needs to request a data item. The key ideas of the scheme include: (i) extra dummy
data items and index files (called dummies for short) are requested to hide the actual
files of the user’s interest; (ii) multiple dummies are selected so that the user’s request
at each round has the same format, which is a necessity to hide the access pattern [9]
and (iii) the retrieved files are re-encrypted and re-positioned before being stored back
to the server so as to break the connections between files and their storage locations
at the server. Generally, these rules ensure that the connections between files and their
storage locations are reshuffled gradually, become more and more difficult to trace as
the number of accesses increases, and eventually become fully un-trackable. Detailed
explanations and analysis will be presented in the following sections.

A Light-Weight Solution to Preservation of Access Pattern Privacy 533

– Assumption: The following assumption is made on the initial condition when our
scheme starts: for any t = 1, · · · , T − 1, the mappings between level-t and level-
(t− 1) files are unknown to the cloud server. In other words, for any particular data
item, the server has no knowledge about the corresponding index files; similarly,
for any particular index file, the server has no knowledge about the corresponding
index files at the upper layers.

– Data Structures Recording Access History: Our scheme makes use of past file
access history when selecting dummies. To facilitate such mechanism, the historical
information about the previous round of file access at layer t is recorded in a data
structure denoted as Qt

pre, which consists of six fields: DR, DS and DS recording
the file IDs, and LR, LS and LS recording their storage locations, respectively. The
data structures are stored in cipher-text in a designated storage space at the server,
and we denote the storage location of Qt

pre as Hist[t].
– Structure of the Algorithm: The pseudo-code of our scheme is presented in Algo-

rithm 1 in Appendix 1. The scheme starts by selecting dummy data items. Then, it
works iteratively to select, download, process and upload the index files, from the
top level to the bottom level of the index hierarchy. In each iteration, it performs
similar operations including Selection & Downloading, Random Reshuffling, and
Re-encryption & Uploading of index files. Finally, the desired data item and the
selected dummy data items are downloaded, randomly reshuffled, re-encrypted and
uploaded. Detailed explanations of the operations are presented next, with a simple
example given in Fig. 2.

Selection of Dummy Data Items. When the cloud user intents to retrieve a data item
(denote its ID by Q0

cur.DR), it also requests the following dummy data items to conceal
its intention:

– the first dummy (whose ID is denoted as Q0
cur.DS): the dummy that may swap its

storage location with Q0
cur.DR after access with a probability of 1/2;

– the second dummy (whose ID is denoted as Q0
cur.DN): the dummy that will not

swap its storage location with others.

Q0
cur.DS and Q0

cur.DN are selected to make sure that the user’s request at each round
has the same format: the user always requests three data locations, out of which two and
only two of them are from the ones accessed in the previous round. Note that requiring
user’s request at each round to have the same format is necessary to hide the true access
pattern [9]. Specifically, it hides the information about whether user’s requests at two
rounds are intended for the same data item. Also note that the second dummy is needed
in order to guarantee that each access can keep the same format. Detailed explanations
are presented in Appendix 2. To maintain the same format in each access, the data
structure Q0

pre is downloaded from the server, which records the information about the
data items (namely, the data IDs and their corresponding locations) accessed in the
previous round. Then, the dummies for the current round are selected according to the
following rules:

– For the first dummy (i.e., Q0
cur.DS): (i) If the intended data item is the same as the

intended data item or the first dummy in the previous round, then the first dummy

534 K. Yang et al.

2. Download and decrypt :
0 . 10;pre RD = Q

// Data Selection

// Query & Download (on Index Level 1)

Cloud ServerCloud User

3dData

Loc 5
…
…

…
…

1d

4
…
…

10d

7
…
…

Data Storage

File

Loc 21
1
1I

3
1
3I1

4I

Level-1 Index File
File

Loc 0
2

1I

Level-2 Index File
1. Desires d3 :

0
preQ

0 . 7;pre RL =Q

3. Randomly select d1 from {d1 , d10}=>

0 . 3cur RD =Q

0 . 1cur SD =Q

Download and decrypt :

2 2. . 1cur R cur SD D= =Q Q

5. Download and decrypt :
1 . 3;pre RD =Q

1
preQ

1 . 2;pre RL =Q

0
preQ

1
2I

4 Hist(1)
1
preQ

Hist(0)
0
preQ

2
1I

6. Compute: 1 . 1,cur RD = Q

7. Randomly reselect from 1
3I 1 1 1

2 3 4{ , , }I I I => 1 . 3cur SD =Q

9. Select location 4 on level 2 => 2 . 4cur NL =Q

Hist(0)

location 0

10. Decrypt

level 1 locations 2, 3, 4

Index

Loc 2 1

1
1I

3

1
3I 1

4I1
2I

4

2
1I

8. From obtains:2
1I

1 . 3,cur RL =Q

1 1 1
3 1 2, ,I I I

Index

Loc 21
1
1I

3
1
3I1

4I

Level-1 Index File

1
2I

4 Hist(1)
1
preQ1 1 1

1 2 3, ,I I I

// Reshuffle (on Index Level 1)

11. Swap 1 1. and .cur R cur SD D Q Q

12. Update 2
1I Index

Loc 3 1

1
1I

2

1
3I 1

4I1
2I

4

13. 2
1I

re-encrypt 2
1() 'I

// Re-encryption and Upload

1
curQ 1() 'curQre-encrypt

store at location 0

store at Hist(1) Index

Loc 0
2
1()'I

Level 2

Index

Loc 21
1
1I

3
1
3I1

4I

Level 1

1
2I

4 Hist(1)
1()'preQ

// Query & Download (on Data Level)

Data

Loc 5 1
1d

4
3d 4d2d

12

1
1I

8 13
5d

9
7d 8d6d

16

1
2I

2 15
9d

11
11d 12d10d

7

1
3I

15. Randomly reselect location 7 on data
level from {7 , 11} => 0 . 7cur NL =Q

16. Decrypt d1 , d3 , d10

data locations 4, 5, 7

14. From obtains:1
1I

0 . 5,cur RL = Q

// Reshuffle (on Data Level)

17. Swap 0 0. and .cur R cur SD D Q Q

18. Update 1
1I Data

Loc

19. 1 1 1
1 2 3, ,I I I re-encrypt

// Re-encryption and Upload

0
curQ 0() 'curQre-encrypt

at level-1 locations 2, 3, 4

store at Hist(0)

3dData

Loc 5
…
…

…
…

1d

4
…
…

10d

7
…
…

Data Storage
Hist(0)

0
preQd1 , d3 , d10

4 1
1d

5
3d 4d2d

12

1 1 1
1 2 3() ', () ', () 'I I I

store

3()'dData

Loc 4

1()'d

5

10()'d

7
…
…

Data Storage
Hist(0)

20. 1 3 10, ,d d d re-encrypt
at data locations 4, 5, 7
store

4.

3 1 10() ', () ', () 'd d d

Index

Loc 21 3
1
4I

Level 1
4 Hist(1)

1()'preQ1
2()'I

0()'preQ

2
1() 'I

1() 'curQ

0() 'curQ

1 1 1
1 2 3() ', () ', () 'I I I

3 1 10() ', () ', () 'd d d

1
3()'I1

1()'I

…
…

…
…

…
…

0 .pre SD =1;Q 0 . 9;pre ND =Q
0 . 4pre SL = ;Q 0 . 11.pre NL =Q

1 . 1pre SD = ;Q 1 . 4;pre ND =Q
1 . 1.pre NL =Q1 . 3pre SL = ;Q

1 . 1cur SD =Q

1 . 2pre SL =Q

0 . 4pre SL =Q

Fig. 2. An example of the access procedure of a cloud user. There is a total of n = 16 data items
and T = 2 levels of index files stored at the cloud server. We use d′

i to represent that data item di

appears differently after re-encryption. In this example, data items d1, d9, d10 were accessed in
the previous round. It shows how the user operates when it is interested in obtaining data item d3

in the current round.

A Light-Weight Solution to Preservation of Access Pattern Privacy 535

will be selected uniformly at random from the set of all data items excluding the
intended data item of the current round. (ii) Otherwise, the first dummy will be
randomly selected from the intended data item or the first dummy in the previous
round with equal probability. (Refer to lines 3 to 7 in Step 1 of Algorithm 1.)

– For the second dummy (i.e., Q0
cur.DN), its selection depends on the selection results

of the first dummy: (i) If both the intended data item and the first dummy have
appeared in the previous round, the second dummy will be selected uniformly at
random from the set of all data storage locations excluding the locations accessed
in the previous round. (ii) Otherwise, the second dummy will be selected uniformly
at random from the locations accessed in the previous round excluding locations of
the already-selected files. (Refer to lines 12 to 20 in Step 2 of Algorithm 1 when
t = 0.)

In the example given in Fig. 2, in the previous round, data #10 was intended by the user
and data #1 was selected as the first dummy. Since data #3 is needed in the current
round (i.e., case (ii) in the first dummy selection rules), the user randomly selects the
first dummy, which is data #1 in this example, from data #10 and data #1 (as shown
by step 3). As the selected data items did not both appear in the previous round (i.e.,
case (ii) in the second dummy selection rules), the second dummy’s location, which
is 7 in this example (as shown by step 15), is selected from data #10 and data #9’s
locations (i.e., data locations #7 and #11).

Selection, Downloading, Processing and Uploading of Index Files. First, the single
top-level index file is downloaded and decrypted, and its ID is recorded in QT

cur.DR,
QT

cur.DS , and QT
cur.DN , i.e., QT

cur.DR = QT
cur.DS = QT

cur.DN = 1 (as shown by step 4
in the example of Fig. 2). Then, three index files for each level t, where (T−1) � t � 1,
are selected, downloaded, processed and uploaded, in an iterative and top-down manner.
Without loss of generality, the following describes the operations for iteration t.

Selection & Downloading of Level-t Index Files. The files that contain the level-t in-
dices of the intended data item (Q0

cur.DR) and the first dummy (Q0
cur.DS) are first se-

lected to access. The IDs of these files are denoted as Qt
cur.DR and Qt

cur.DS respec-
tively. Note that, these file IDs can be found out by using the afore-defined f(·, ·) func-
tion, i.e., Qt

cur.DR = f(Q0
cur.DR, t) and Qt

cur.DS = f(Q0
cur.DS , t). Then, similar to

the selection of dummy data items, additional dummy index files are selected to make
sure that, in each round, three level-t index files are accessed and exactly two of them
appeared in the previous round. The following rules are applied in the selection:

– For the first dummy index file (i.e., Qt
cur.DS): If the intended data item and the first

dummy share the same level-t index file, the first dummy index file is re-selected
uniformly at random from the index files whose storage locations are stored in files
Qt+1

cur .DR or Qt+1
cur .DS, i.e., the level-(t+1) intended index file and the first dummy

index file downloaded in the previous iteration of this algorithm. (Refer to lines 8
to 10 in Step 2 of Algorithm 1.)

– For the second dummy index file (i.e., Qt
cur.DN): (i) If the intended index file and

the first dummy index file have both appeared in the previous round, the second

536 K. Yang et al.

dummy index file will be selected uniformly at random from all level-t index file
locations excluding the locations that appeared in the previous round. (ii) Other-
wise, the second dummy index file will be selected uniformly at random from the
locations that appeared in the previous round excluding locations of the already-
selected files. (Refer to lines 12 to 20 in Step 2 of Algorithm 1 when t �= 0.)

After the level-t index files have been selected, the locations of files Qt
cur.DR and

Qt
cur.DS can be found by searching their indices in the downloaded level-(t + 1) index

files, i.e., files Qt+1
cur .DR and Qt+1

cur .DS . Then the locations of the three level-t index
files are provided to the server and the files can be downloaded. Note that, the locations
are presented to the server in an arbitrary order, so that the server cannot distinguish be-
tween desired index files and dummies. The downloaded files are then decrypted with
the user’s key.

In the example given in Fig. 2, since the intended data item and the first dummy share
the same level-1 index file I1

1 , the user randomly selects a new first dummy index file,
which is I1

3 in this example, from level-1 index files {I1
2 , I1

3 , I1
4} (as shown by steps 6

and 7). Then the user looks up I2
1 to find out the storage locations Q1

cur.LR and Q1
cur.LS

(as shown by step 8). Since both I1
1 and I1

3 were accessed in the previous round, the user
selects the second dummy index file with location #4 (as shown by step 9). Hence, the
user retrieves the files from level-1 storage locations #2, #3 and #4.

Random Reshuffling of Selected Level-t Index Files. The intended index file (Qt
cur.DR)

and the first dummy index file (Qt
cur.DS) may swap their storage locations with a prob-

ability of 1/2. If the swap happens, the index information of these files should be up-
dated in their index files Qt+1

cur .DR and Qt+1
cur .DS , respectively. In the example given in

Fig. 2, since files Q1
cur.DR and Q1

cur.DS are swapped, the user updates I2
1 accordingly

(as shown by steps 11 and 12).

Re-encryption & Uploading of Index Files. Now, we have completed the processing of
level-(t + 1) index files Qt+1

cur .DR, Qt+1
cur .DS and Qt+1

cur .DN . To hide content and/or lo-
cation changes made to them, these files should be re-encrypted before being uploaded
back to the server. In our scheme, re-encryption is performed by applying the Cipher
Block Chaining (CBC) encryption techniques [13] on the file content, where the first
block of the file is a non-reappearing nonce. The user’s key is used in the re-encryption.
This way, the same secret key can be reused for encrypting all files, which simplifies
the key management at the cloud user. Such re-encryption process ensures that a com-
putationally bounded adversary does not have non-negligible advantage at determining
whether a pair of encrypted data items (before and after re-encryption, respectively)
carry the same data content.

After re-encryption, files Qt+1
cur .DR, Qt+1

cur .DS and Qt+1
cur .DN are uploaded to their

locations, respectively, but in an arbitrary order to make it difficult for the cloud server
to track these files. At the end of iteration t, data structure Qt

pre should be replaced by
Qt

cur, then re-encrypted and uploaded to location Hist[t]. This way, next time when Qt
pre

is downloaded, it will reflect the mostly recent access history.
In the example given in Fig. 2, I2

1 and Q1
cur are re-encrypted and uploaded to the

server at the storage locations #0 and Hist[1], respectively (as shown by step 13).

A Light-Weight Solution to Preservation of Access Pattern Privacy 537

Downloading, Processing and Uploading of Data Items. After the above steps, the
level-1 index files have been downloaded and decrypted. Based on the index informa-
tion in these files, the desired data item and two additional dummy data items can be
downloaded from the cloud server and decrypted with the user’s key. Upon the user’s
access to the desired data item has been completed, the intended data item and the first
dummy may swap their storage locations with a probability of 1/2, and if the swap hap-
pens, changes will be made to the level-1 index files Q1

cur.DR and/or Q1
cur.DS , respec-

tively. Finally, the three level-1 index files and the three data items are re-encrypted and
uploaded to the cloud server. Also, data structure Q0

pre is updated to Q0
cur, re-encrypted

and uploaded to the server. The re-encryption and uploading operations are performed
in the similar manner as described above.

In the example given in Fig. 2, the user looks up I1
1 to find the storage locations

Q0
cur.LR = 5 andQ0

cur.LS = 4. As afore-explained, the user selects the second dummy’s
storage location Q0

cur.LR = 7 (as shown by steps 14 and 15). Since data items Q0
cur.DR

and Q0
cur.DS are swapped, the content of I1

1 is updated (as shown by steps 17 and 18).
Finally, the re-encrypted level-1 index files, Q0

cur and data items are uploaded to the
server respectively.

4 Security and Overhead Analysis

In this section, we first show that the proposed scheme can preserve the privacy of user
data access pattern in the long run. That is, after a sufficiently large number of accesses,
the frequency with which each data item has been accessed cannot be figured out by
the cloud server. Then we discuss the practical implications of this security property
through analyzing how our scheme can deal with some typical attacks that are based on
the knowledge of data access pattern. Finally we analyze the overhead of the proposed
scheme.

4.1 Security Analysis

We first show that the access pattern of index file locations, which can be observed
by the cloud server, does not reveal extra information about the data access pattern. In
the proposed scheme, index files are used to facilitate user query and data access. The
content of an index file is protected by being re-encrypted after each access, based on
the user’s secret key and a random non-repeating nonce. Hence, it is impossible for the
server to gain information about the data access pattern from the content of index files.
The following theorem states that observing the access pattern of index file storage
locations does not reveal more information about data access pattern than observing
only the access pattern of data storage locations.

Theorem 1. The cloud server cannot gain any advantage in inferring user’s data access
pattern through observing the access pattern of index file storage locations.

Proof. Refer to [21].

538 K. Yang et al.

As the observed access pattern of index file locations does not help in inferring data ac-
cess pattern, we next study what can be inferred from observing only the access pattern
of data storage locations. The following theorem formally states the property that, if
the cloud server can only observe the access pattern of data storage locations, the data
access pattern, namely, the data item requested by a cloud user and the frequency with
which each data item has been accessed by a cloud user, can be preserved in the long
run.

Theorem 2. If a cloud user has accessed the data items, despite the user access se-
quence, for a sufficiently large number of times, each storage location at the cloud
server is accessed uniformly at random.

Proof. Refer to Appendix 3 for a sketch of the proof and [21] for the detailed proof.

Note that the proof of Theorem 2 also implies that, after a sufficiently large number of
accesses, the server does not have non-negligible advantage at determining whether a
specific data storage location corresponds to a particular data item.

Discussion. To further understand the practical implications of the above security prop-
erty, we now discuss a few typical attacks that are based on the knowledge of data access
pattern, and analyze how our scheme can deal with the attacks.

Security Against Tracking Data Items. Suppose the cloud server has identified a par-
ticular user data item via other means, e.g., physical spying. It may want to keep track
of this data item thereafter. Using our proposed scheme, due to the property described
in Theorem 2, after a sufficiently large number of accesses, the server does not have
non-negligible advantage at determining which location the target data item is at. For
example, after the first round that the target item has been accessed, from the server’s
perspective, the target item may be stored at any of the three accessed locations with
an equal probability of 1/3. Then if any of these three locations is accessed in the
next round, the probability will be divided further among the newly accessed locations.
Therefore, by solely observing the storage locations accessed by the user, the server
could lose track of the target data item quickly.

Security Against Focused Attacks on Selected Data Items. Some of the cloud user’s data
items may be requested with very high frequency. These files are often important to the
user. If a malicious cloud server knows which data items are frequently accessed, it may
launch intensive attacks on the data, attempting to find out the content or contextual
information of the data. Note this, such attacks are sometimes feasible in practice, for
example, when the adopted data encryption algorithm or the key chosen by the user is
not sophisticated enough, or some side information about the data can be obtained in
other means. Using our proposed scheme, due to the property described in Theorem 2,
all data storage locations will be equally accessed in the long run. Hence, the server
cannot identify which data items are frequently requested by the user. Similarly, some
of the cloud user’s data items may be requested with very low frequency, e.g., backup
data. A malicious cloud server may want to stealthily delete these rarely-accessed user

A Light-Weight Solution to Preservation of Access Pattern Privacy 539

data items to save storage and maintenance cost for itself without being noticed by the
user. Such attack can also be stopped as our proposed scheme prevents the server from
identifying rarely requested data items.

4.2 Overhead Analysis

Communication and Computational Overhead. With our proposed scheme, to ac-
cess a single data item, the cloud user needs to obtain the following information from
the cloud server:

– Three index files at each level of the storage hierarchy; each index file records the
storage locations of m index files at its next lower level and it takes log n bits to
represent a storage location.

– One access history file at each level of the storage hierarchy; each access history
file records the IDs and storage locations of three index files (at this level) that
were accessed in the previous round; hence, it contains six fields and each field is
log n-bit long.

– The desired data item and two additional dummy data items; let τ denote the size
of each data item in bits.

Recall that there is a total of logm n levels in our proposed hierarchical storage struc-
ture. Therefore, the overall communication and computational overhead for accessing
a single data item can be calculated as:

OHc&c = m log n · 3 logm n + 6 log n · logm n + 3τ. (1)

It is easy to verify that:
{

min OHc&c = OHc&c|m=4 = 9(log n)2 + 3τ ;
max OHc&c = OHc&c|m=n = (3n + 6) log n + 3τ.

(2)

Storage Overhead. As explained in Section 3.1, the total number of index files in our
proposed scheme is n−1

m−1 . Each index file records the storage locations of m index files
at its next lower level and it takes log n bits to represent a storage location. Therefore,
the overall storage overhead at the cloud server can be calculated as:

OHs server = m log n · n − 1
m − 1

+ nτ. (3)

It is easy to verify that:
{

min OHs server = OHs server|m=n = n log n + nτ ;
max OHs server = OHs server|m=2 = 2(n − 1) log n + nτ.

(4)

At the user side, to operate our proposed scheme, the cloud user needs to store one
access history file, three index files, and three more index files or data items at any
given time. Therefore, the required storage at the user side is:

OHs user = 6 log n + 3m logn + max{3m logn, 3τ}. (5)

540 K. Yang et al.

Overhead Comparison. Based on the above overhead analysis, we set m = 4 in our
scheme. In Table 2, we compare our scheme with one of the state-of-the-art access
pattern preservation schemes for single-cloud-server systems [20].

Table 2. Overhead Comparison

Comm./Comp. Storage (server side) Storage (user side)

Our Scheme (m = 4) O((log n)2 + τ) O(n max{log n, τ}) O(max{log n, τ})
Scheme in [20] O(log n · log log n · τ) O(n · τ) O(

√
n · τ)

It is interesting to see that, as long as the size of a data item (τ , in bits) is larger than
log n where n is the total number of data items, which usually holds true in practical
cloud storage applications, our scheme is more efficient. Specifically, our scheme (i)
consumes similar storage space at the cloud server; (ii) usually incurs significantly less
communication and computational overhead; and (iii) requires significantly less storage
space at the cloud user, which facilitates the employment of our proposed scheme on
thin user devices such as mobile phones. Note that the better efficiency performance of
our scheme is achieved under a less stringent privacy requirement than [20]; instead of
requiring strict privacy protection to the data access pattern, our scheme aims to protect
the privacy of the data access pattern in the long run.

5 Performance Evaluation

5.1 Evaluation Setup

To evaluate the performance of the proposed scheme, we have collected two user access
traces from two popular cloud service providers: Youtube [22] and Baidu [2]. As shown
in Figs. 3(i) and (ii), both the Youtube user and the Baidu user have 256 files stored
at the server. Different files have been accessed with different frequencies over time.
Moreover, we have created an additional user who always requests the same file from
the server, called the SFA (Single File Access) user, as shown in Fig. 3(iii). We use the
SFA user to emulate an extreme access pattern. The total number of files stored at the
server for the SFA user is also 256.

5.2 Preservation of Access Frequency Privacy

To study how well our proposed scheme preserves a cloud user’s access frequency pri-
vacy, we propose to use entropy to measure the distribution of the user’s access fre-
quencies to different files. Specifically, let Ci denote the number of accesses to the file
stored at storage location i. Then, the access frequency to location i is Fi = Ci∑

i Ci
, and

the entropy of access frequency is HF = −∑
i Fi log(Fi). For example, HF of the

Youtube and Baidu traces is around 7.6 and 6.5, respectively, which can be calculated
by counting the number of accesses to each file in Figs. 3(i) and (ii). Clearly, for a given
set of files stored at the server, the maximum entropy is achieved when all file locations

A Light-Weight Solution to Preservation of Access Pattern Privacy 541

 0 128 256
0

2

4

6

nu
m

be
r

of
 a

cc
es

se
s(

x1
04)

data ID
 0 128 256
0

1

2

3

4

5

nu
m

be
r

of
 a

cc
es

se
s(

x1
03)

data ID
 1 64 256
0

1

ac
ce

ss
 p

ro
ba

bi
lit

y

data ID

(i) Youtube (ii) Baidu (iii) SFA

Fig. 3. Data access traces and distribution used in the performance evaluation

have been accessed with an equal probability. This means that, the maximum entropy
for accessing 256 files is Hmax

F (256) = −256 × 1
256 log(1

256) = 8.
We evaluate how the entropy of access frequency changes as the number of access

rounds increases. Fig. 4 plots the results (averaged over 100 simulation runs) for differ-
ent access scenarios. It can be seen clearly from the figures that, with our scheme, the
entropy of access frequency improves over the original trace, and converges gradually
to the maximum entropy in all simulated scenarios. This confirms our analytical study
in Section 4 and Theorem 2 that the access frequency distribution converges towards
the uniform distribution in the long run.

0 2 4 6 8
2

7.6
8

number of rounds (x1000)

H
F

w/ scheme
w/o scheme
max entropy
trace entropy

0 2 4 6 8

6.5

8

number of rounds (x1000)

H
F

w/ scheme
w/o scheme
max entropy
trace entropy

0 2 4 6 8
2

8

number of rounds (x1000)

H
F

w/ scheme
max entropy

(i) Youtube (ii) Baidu (iii) SFA

Fig. 4. The entropy of access frequency vs. the number of access rounds for a particular simulation
run under different access scenarios. In (iii), because the SFA user always requests the same data
item at each round, the entropy of access frequency without using our proposed scheme is always
zero, which is not shown in the figure.

5.3 Preservation of Access Order Privacy

In this section, we demonstrate the effectiveness of the proposed scheme in preserving
the access order privacy. We do so by evaluating the correlation between the output
access sequences (i.e., the sequence of the requested data items’ storage locations) for
the same input access sequence (i.e., the sequence of actual data items requested by
the user). Specifically, in each simulation run, we simulate the access procedure using
the same input access sequence twice and calculate the correlation coefficient (denoted
as Φ) between the two output sequences. A smaller Φ indicates that the two output

542 K. Yang et al.

sequences are less correlated, and thus the access order privacy is better preserved.
Note that, using our scheme, the server observes accesses to three storage locations at
each round. Therefore, it won’t be able to get the exact sequence of the requested data
items’ storage locations, which also helps to preserve the access order privacy.

Figs. 5(i) plot the Φ values (averaged over 100 simulation runs) as the number of ac-
cess rounds increases for different access scenarios. We can see that Φ decreases as the
number of access rounds increases, thus the correlation between the output sequences
becomes looser. Notice that Φ never reaches zero (i.e., perfect access order privacy) in
the simulation, which is due to the randomness and finite length of the output sequence.
As a result, Φ remains at small values (e.g., < 0.1) after a number of accesses.

0 1000 2000 3000
0

0.1

0.5

1

number of rounds

Φ

Youtube
Baidu
SFA

0 1000 2000 3000
0

2

4

6

8

number of rounds

H
L

Youtube
Baidu
SFA

0 5000 10000
0

2

4

6

8

number of rounds

E
C

D
F

Youtube
Baidu
SFA

(i) (ii) (iii)

Fig. 5. (i) Average correlation coefficient (Φ) between output sequences for the same input se-
quences with our proposed scheme. (ii) Average entropy of location distribution vs. the number
of access rounds for the most frequently requested data item. (iii) Average entropy of location
distribution vs. the number of access rounds for the least frequently requested data item.

5.4 Preservation of Data Item’s Location Privacy

As discussed in Section 4.1, when the user employs our proposed scheme, the cloud
server loses track of a certain data item gradually over time. In other words, from the
server’s perspective, the uncertainty of a data item’s storage storage location increases
gradually over time. Similar to the evaluation of access frequency privacy, we also use
entropy to measure the uncertainty of a particular data item’s storage location from the
server’s perspective. It is defined as HL = −∑

i pi log(pi), where pi is the probability
that the data item is at storage location i from the server’s perspective. We evaluate how
the entropy of the data item’s location distribution grows as the number of access rounds
increases. For each access scenario, we collect the statistics of the most accessed data
item and the least accessed data item, and results (averaged over 100 simulation runs)
are plotted in Figs. 5(ii) and (iii), respectively. From the figures, we can see that a data
item’s location distribution entropy reaches the maximum regardless of their real access
frequency. Note that, without our proposed scheme, a data item’s location distribution
entropy is zero because its location is fixed and known to the server.

6 Related Work

Although many schemes [19,18,23] have been proposed to protect data confidentiality
and data integrity for the cloud computing paradigm, little effort has been made to

A Light-Weight Solution to Preservation of Access Pattern Privacy 543

protect users’ access pattern privacy. Private Information Retrieval (PIR) [5, 15, 11],
Oblivious RAM [9,20] and Steganographic File Systems (SFS) [24,16,6]are the works
most related to our solution.

Private Information Retrieval: PIR schemes aim to allow clients to retrieve informa-
tion from a database while maintaining the privacy of the queries to the database. Fully
implementing the PIR notion is, however, expensive. As shown by Sion et al. [15],
deployment of any single-server PIR protocol is not necessarily more efficient than a
simple transfer of the entire database due to computational costs. On the other hand,
PIR schemes typically do not address data confidentiality, which makes PIR schemes
unsuitable to be applied in the un-trusted cloud environments.

Oblivious RAM: In order to prevent the users’ access pattern from being revealed,
Oblivious RAM (ORAM) [20, 8] has been proposed. In a latest version of ORAM,
Williams et al. [20] proposed to user encrypted Bloom Filter [3] to reshuffle and scram-
ble data in the database. In Section 4.2, we have shown that our scheme is much more ef-
ficient in terms communication, computational and storage overheads in practical cloud
storage applications under a less stringent privacy requirement.

Steganographic File Systems: Research efforts on steganographic file systems [24,
16, 6] are also related to our proposed design. The major differences lie in that, the
research on SFS targets at protecting the information about existence and/or locations
of sensitive files through hiding both short-term and long-term access patterns, while
our proposal mainly targets at protecting long-term access pattern at low cost.

Recently, there is a concurrent effort [17] that addresses a similar problem as the
one in our work. Their solution and ours share similar high-level ideas such as usage of
dummies, hierarchical storage structure and file reshuffling. However, there are several
key differences between the two solutions. For example, our solution yields provable
security and overhead performances and does not require user-side LRU cache or an
empirical statistical access model.

7 Conclusions and Future Work

In this paper, we present a lightweight solution to the preservation of a cloud users’
data access pattern privacy in un-trusted clouds. Rigorous proofs have been provided to
show that the proposed scheme can provide full protection to data access pattern pri-
vacy in the long run. Extensive evaluations have also been conducted to show that the
scheme can protect the data access pattern privacy effectively after a reasonable number
of accesses have been made. In the future work, we plan to enhance the scheme such
that it can support private and efficient data updates, including data changes, data inser-
tions and data deletions.

Acknowledgments. We would like to thank the shepherd and the reviewers for their
valuable suggestions for strengthening the paper. The research reported in this paper
was supported in part by the Information Infrastructure Institute (iCube) of Iowa State
University, the Security and Software Engineering Research Center (S2ERC), the Na-
tional Science Foundation under Grants CNS 0831874 and CNS 0716744, and the office
of Naval Research under Grant N000140910748.

544 K. Yang et al.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Tech. Rep. UCB-EECS (2009)

2. Baidu, http://passport.baidu.com/?business&aid=6&
un=chenfoxlord#7

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM 13 (1970)

4. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proc. STOC 1997
(1997)

5. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc.
FOCS 1998 (1998)

6. Diaz, C., Troncoso, C., Preneel, B.: A framework for the analysis of mix-based stegano-
graphic file systems. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
428–445. Springer, Heidelberg (2008)

7. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual machine-based
platform for trusted computing. In: Proc. SOSP 2003 (2003)

8. Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In:
Proc. STOC 1987 (1987)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious ram. In: JACM
1996 (1996)

10. Itkis, G.: Personal communication, via oded goldreich (1996)
11. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-

private information retrieval. In: Proc. IEEE Symposium on Foundations of Computer Sci-
ence (1997)

12. Mell, P., Grance, T.: Draft: Nist working definition of cloud computing (2010)
13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press, Boca Raton (1996)
14. Ostrovsky, R., Shoup, V.: Private information storage. In: Proc. STOC 1997 (1997)
15. Sion, R., Carbunar, B.: On the computational practicality of private information retrieval. In:

Proc. NDSS 2007 (2007)
16. Troncoso, C., Diaz, C., Dunkelman, O., Preneel, B.: Traffic analysis attacks on a

continuously-observable steganographic file system. In: Furon, T., Cayre, F., Doërr, G., Bas,
P. (eds.) IH 2007. LNCS, vol. 4567, pp. 220–236. Springer, Heidelberg (2008)

17. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Efficient
and private access to outsourced data. In: Proc. ICDCS 2011 (2011)

18. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring data storage security in cloud computing.
In: Proc. IWQoS 2009 (2009)

19. Wang, C., Wang, Q., Ren, K., Lou, W.: Secure ranked keyword search over encrypted cloud
data. In: Proc. ICDCS 2010 (2010)

20. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern
privacy and correctness on untrusted storage. In: Proc. CCS 2008 (2008)

21. Yang, K., Zhang, J., Zhang, W., Qiao, D.: A light-weight solution to preservation of access
pattern privacy in un-trusted clouds. Technical Report (2011), http://www.public.
iastate.edu/˜yangka/PatternFull.pdf

22. Youtube, http://www.youtube.com/user/supercwm
23. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained access

control in cloud computing. In: Proc. INFOCOM 2010 (2010)
24. Zhou, X., Pang, H., Tan, K.L.: Hiding data accesses in steganographic file system. In: Proc.

ICDE 2004 (2004)

http://passport.baidu.com/?business&aid=6&un=chenfoxlord#7
http://passport.baidu.com/?business&aid=6&un=chenfoxlord#7
http://www.public.iastate.edu/~yangka/PatternFull.pdf
http://www.public.iastate.edu/~yangka/PatternFull.pdf
http://www.youtube.com/user/supercwm

A Light-Weight Solution to Preservation of Access Pattern Privacy 545

Appendix 1

What follows is the algorithm for the proposed access procedure of a cloud user. The
details of the algorithm are described and explained in Section 3.2.

Algorithm 1. Proposed Access Procedure of a Cloud User
Step 1: Selection of Data Items (of IDsQ0

cur.DR andQ0
cur.DS) to Access

1: Q0
cur.DR ← UserRequest(); k← UserKey(); // input user’s desired data and secret key

2: Download&Decryptk(Q0
pre, Hist[0]);

// get access history of data items from location Hist[0] & decrypt it
3: ifQ0

cur.DR ∈ {Q0
pre.DR,Q0

pre.DS} then

4: Q0
cur.DS ← RandomSelectOne(D \ {Q0

cur.DR});
5: else
6: Q0

cur.DS ← RandomSelectOne({Q0
pre.DR,Q0

pre.DS});
7: end if
Step 2: Query for Index Files and Data Items
1: Download&Decryptk(IT

1 , 0); // download top-level index file from location 0 & decrypt it
2: QT

cur.DR ← 1;QT
cur.DS ← 1;QT

cur.DN ← 1;
3: for (t← (T − 1); t � 0; t−−) do
4: // Step 2.1: Selection of Level-t Index Files andQ0

cur.LN

5: if t > 0 then
6: Download&Decryptk(Qt

pre, Hist[t]); // get access history of level-t index files

7: Qt
cur.DR ← f(Q0

cur.DR, t);Qt
cur.DS ← f(Q0

cur.DS , t);
// find out files storing level-t indices of data itemsQ0

cur.DR andQ0
cur.Ds

8: ifQt
cur.DR = Qt

cur.DS then
9: Qt

cur.DS ← RandomSelectOne(ξ(Qt+1
cur .DR, t + 1) ∪ ξ(Qt+1

cur .DS, t + 1) \ {Qt
cur.DR});

10: end if
11: end if
12: if {Qt

cur.DR,Qt
cur.DS} ⊆ Qt

pre then

13: Qt
cur.LN ← RandomSelectOne(Lt \ {Qt

pre.LR,Qt
pre.LS,Qt

pre.LN});
14: else
15: ifQt

cur.DR ∈ Qt
pre then

16: Qt
cur.LN ← RandomSelectOne({Qt

pre.LR,Qt
pre.LS,Qt

pre.LN} \ {Qt
cur.LR});

17: else
18: Qt

cur.LN ← RandomSelectOne({Qt
pre.LR,Qt

pre.LS,Qt
pre.LN} \ {Qt

cur.LS});
19: end if
20: end if
21: Download&Decryptk(Qt

cur.{DR, DS , DN},Qt
cur.{LR, LS, LN});

/* download files of IDsQt
cur.{DR, DS , DN} from locations specified byQt

cur.{LR, LS, LN}
respectively but in an arbitrary order & decrypt them */

// Step 2.2: Random Reshuffling
22: if RandomSelectOne({0, 1}) = 1 then
23: Swap(Qt

cur.DR,Qt
cur.DS);

24: UpdateQt
cur.{LR, LS} in level-(t + 1) index files of IDsQt+1

cur .{DR, DS};
25: end if

// Step 2.3: Reencryption/Uploading of Level-(t + 1) Files and Level-t Access History
26: Reencryptk&Upload(Qt+1

cur .{DR, DS , DN},Qt+1
cur .{LR, LS, LN});

/* reencrypt & upload files of IDsQt+1
cur .{DR, DS , DN} to locations specified by

Qt+1
cur .{LR, LS, LN} respectively but in an arbitrary order */

27: Reencryptk&Upload(Qt
cur, Hist[t]);

28: end for
Step 3: Reencryption and Uploading of Accessed Data Items
1: Reencryptk&Upload(Q0

cur.{DR, DS , DN},Q0
cur.{LR, LS, LN});

546 K. Yang et al.

Appendix 2

We now explain why our proposed scheme requires the user to download two dummy
data items together with the intended data item in each access.

Suppose the scheme only downloads one dummy data item (whose ID is denoted as
Q0

cur.DR) together with the intended data item (whose ID is denoted as Q0
cur.DS). We

let the dummy data item be selected to make sure that the user’s request at each round
has the same format: the user always requests two data locations, out of which one and
only one of them is from the ones accessed in the previous round. The rules for selecting
the dummy data item are: (i) if the intended data item has been accessed in the previous
round, the dummy is selected uniformly at random from the data items that have not
been accessed in the previous round; (ii) otherwise, the dummy is selected from the two
accessed data items with equal probability.

Similarly, we would like to have the same format at each round of index file access:
at each index level, the user always requests two index file locations, out of which one
and only one of them is from the ones accessed in the previous round. Unfortunately,
this may not always be possible with a single dummy index file. An example is given
in Fig. 6 to illustrate the problem.

Index

Loc 2 1

1
1I

3

1
3I

1
4I

1
2I

4

2
1I

Data

Loc 5 1
1d

4
3d 4d2d

12

1
1I

8 13
5d

9
7d 8d6d

16

1
2I ...

Level-2 Index File

Level-1 Index File

Fig. 6. In this example, there are n = 16 data items and T = 2 levels of index files stored at the
cloud server. The contents of index files I2

1 , I1
1 and I1

2 are shown in the figure.

In Fig. 6, suppose in the first round, the user needs data item d1 and data item d2 is
randomly selected to be the dummy. Since d1 and d2 share the same level-1 index file
I1
1 , the user needs to randomly select a new dummy index file. Suppose the user selects

I1
2 as the dummy index file. Then in the second round, suppose the user needs data item

d5. According to the selection rules, the user randomly selects a dummy from d1 and
d2. However, no matter whether d1 or d2 is selected as the dummy, the user needs to
retrieve I1

1 and I1
2 in order to get the storage locations of d5 and the selected dummy.

Note that both I1
1 and I1

2 have been accessed in the previous round; this violates the
desired access format.

A quick remedy to the problem may be as following: when selecting the dummy, the
user randomly selects the dummy from data items that do not share the same index files
(except for the top level) with the intended data item. It is easy to see that this selection
rule can avoid the afore-described problem. However, such remedial action may leak
information about user’s access pattern in some situations. For example, in Fig. 6, if the
user accesses d1 consecutively, data locations where d2, d3 and d4 are stored will never
be accessed, which may leak information about the data item of user’s interest.

A Light-Weight Solution to Preservation of Access Pattern Privacy 547

There may exist more sophisticated rules that can preserve the user’s long-run access
pattern using a single dummy, which we are not aware of at the moment. So instead, in
this work, we adopt an efficient two-dummy solution to guarantee that user’s access at
each around has the same format.

Appendix 3

In this section, we sketch the proof for Theorem 2. Please refer to [21] for the detailed
proof. In the proposed scheme, at each round of access, the user accesses three data
items, where two of them (DR and DS) randomly swap their locations after the access
and the other DN does not. Therefore, the selection of DN does not affect the location
distribution of the data items. As a result, in the proof, we only need to consider the
behavior of DR and DS .

()2 1;j n id d d d d1 id d ...1

2

n

i

j

d
d

d

d
d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟
⎜ ⎟

 ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i

j

d

d

()1 2;j n id d d d d2 id d ()1 2 ;j n id d d d di nd d

()2 1;j n id d d d di 1d d ...()1 2;j n id d d d di 2d d ()1 2 ;j n id d d d dn id d

()2 1;i n jd d d d d1 jd d ...()1 2 2;i n jd d d d djd d ()1 2 ;i n jd d d d dj nd d

()2 1;i n jd d d d dj 1d d ...()1 2;i n jd d d d dj 2d d ()1 2 ;i n jd d d d dn jd d

1(,)if d d 2(,)if d d (,)i nf d d

1(,)jf d d 2(,)jf d d (,)j nf d d

1(,)if d d 2(,)if d d (,)i nf d d

1(,)jf d d 2(,)jf d d (,)j nf d d

;

Fig. 7. One-step transition from an arbitrary state (d1 d2 · · · di · · · dj · · · dn; di dj) to other
reachable states in MC-1. f(·, ·) is the transition probability function.

Let di (i = 1, · · · , n) denote the data items and Pi denote the probability with which
di is actually requested by the user in each round of access. We model the data access
process with a homogeneous Markov chain denoted as MC-1, as shown in Fig. 7. Each
state of MC-1 is (σ; di dj). Here, σ is a permutation of (d1, · · · , dn), which stands
for one distribution of the n data items to n storage locations. i and j are two distinct
numbers from {1, · · · , n}, and di and dj is DR and DS respectively. Hence, there is

a total of n!
(

n

2

)
distinct states in MC-1.

In the proof, we show that MC-1 converges to a steady state. In the steady state,
all permutations of data items are equally likely to happen. Consequently, every data
item is uniformly randomly distributed to all storage locations in the steady state. This
implies that each storage location will be accessed uniformly at random in the long run.

	A Light-Weight Solution to Preservation of Access Pattern Privacy in Un-trusted Clouds
	Introduction
	Models and Assumptions
	System Model
	Security Model
	Design Goal

	The Proposed Scheme
	System Setup
	Scheme Description

	Security and Overhead Analysis
	Security Analysis
	Overhead Analysis

	Performance Evaluation
	Evaluation Setup
	Preservation of Access Frequency Privacy
	Preservation of Access Order Privacy
	Preservation of Data Item's Location Privacy

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

