
Prolonging Sensor Network Lifetime Through Wireless Charging∗

Yang Peng, Zi Li, Wensheng Zhang, and Daji Qiao
Iowa State University, Ames, IA, USA

Email: {yangpeng,zili,wzhang,daji}@iastate.edu

Abstract

The emerging wireless charging technology is a promis-
ing alternative to address the power constraint problem
in sensor networks. Comparing to existing approaches,
this technology can replenish energy in a more control-
lable manner and does not require accurate location of or
physical alignment to sensor nodes. However, little work
has been reported on designing and implementing a wire-
less charging system for sensor networks. In this paper,
we design such a system, build a proof-of-concept proto-
type, conduct experiments on the prototype to evaluate its
feasibility and performance in small-scale networks, and
conduct extensive simulations to study its performance in
large-scale networks. Experimental and simulation results
demonstrate that the proposed system can utilize the wire-
less charging technology effectively to prolong the network
lifetime through delivering energy by a robot to where it is
needed. The effects of various configuration and design pa-
rameters have also been studied, which may serve as useful
guidelines in actual deployment of the proposed system in
practice.

1 Introduction

Wireless sensor nodes are powered by small batteries,
and the limited energy supply has constrained the lifetime
of a sensor network. This has been a long-lasting, fun-
damental problem faced by sensor networks that are de-
signed for long-term operation. Energy conservation [2, 8],
environmental energy harvesting [3, 5, 6, 11], incremental
deployment, and battery replacement [17, 19] approaches
have been proposed to address the problem. However, en-
ergy conservation schemes can only slow down energy con-
sumption but not compensate energy depletion. Harvest-
ing environmental energy, such as solar [3, 6], wind [11],
vibration [5], is subject to their availability which is of-
ten uncontrollable by people. The incremental deployment
approach may not be environmentally friendly because de-
serted nodes can pollute the environment. The battery or
node replacement approach is applicable only for scenarios
that sensor nodes are accessible by people or sophisticated
robots that can locate and physically touch the sensor nodes.

∗This work is supported partly by the NSF under Grant CNS-0831874.

As the wireless charging technology is being commer-
cialized [12], it has become a promising alternative to ad-
dress the energy constraint problem in sensor networks.
Different from energy harvesting technologies, the wire-
less charging technology, together with more and more ma-
ture and inexpensive mobile robots, will make controllable
power replenishment possible, with which power can be
replenished proactively to meet application requirements
rather than passively adapted to the availability of environ-
mental resources. Comparing with sensor node or battery
replacement approaches, the wireless charging technology
allows a mobile charger to transfer energy to sensor nodes
wirelessly without requiring accurate localization of sensor
nodes or strict alignment between the charger and nodes.

In spite of the potential advantages of the wireless charg-
ing technology, little work has been reported on designing
and implementing a wireless charging system for sensor
networks. In this work, we design such a system that con-
sists of (1) a mobile wireless power charger; (2) a network
of sensor nodes equipped with wireless power receivers;
and (3) an energy station that is responsible for monitor-
ing the energy status of sensor nodes, deciding the power
charging sequences to be executed by the mobile charger.
We have built a proof-of-concept prototype of the system,
and conducted experiments on the prototype to evaluate its
feasibility and performance in small-scale networks. In ad-
dition, we have conducted extensive simulations to study
the performance of the proposed system in large-scale net-
works. Experimental and simulation results demonstrate
that the proposed system can utilize the wireless charging
technology effectively to prolong the network lifetime. The
effects of the wireless charging efficiency, the routing algo-
rithm and various design parameters have also been studied,
which may serve as useful guidelines in actual deployment
of the proposed system in practice.

The rest of the paper is organized as follows. Section 2
presents the design and implementation of the proposed
system. Section 3 formulates the charging problem and
presents the details of charging algorithms. Sections 4 and 5
report the experimental results obtained from the prototype
system, and the simulation results on large-scale networks,
respectively. Finally, Section 6 summarizes the related work
and Section 7 concludes the paper.
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2 System Design and Implementation

2.1 System Overview

As shown in Fig. 1, the proposed system has three main
components: a mobile charger (MC) – a mobile robot car-
rying a wireless power charger, a network of sensor nodes
equipped with wireless power receivers, and an energy sta-
tion that monitors the energy status of the network and di-
rects the MC to charge sensor nodes.
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Figure 1: System overview.

The system works as follows. Sensor nodes perform ap-
plication tasks such as environment monitoring, generate
sensory data, and periodically report the data to the sink.
In addition, they also monitor the voltage readings of their
own batteries, estimate energy consumption rates, based on
which derive their own lifetime, and then report the infor-
mation to the sink periodically. When the energy informa-
tion is forwarded to the sink, it is aggregated en-route to
save communication overhead. Particularly, only the energy
information of the k shortest-lifetime nodes is forwarded
while the information of other nodes is dropped, where k
is a system parameter. Upon receiving the energy informa-
tion, the sink forwards it to the energy station, which runs a
charging algorithm to process the information and plan the
charging activities, and then sends a command message to
the MC. The command includes the charging plan that the
MC should execute. Once receiving the command, the MC
starts charging a selected set of sensor nodes sequentially
according to the instruction. When the MC receives a new
command, it adjusts its charging activities accordingly.

We have built a proof-of-concept prototype of the pro-
posed system. Its hardware and software components are
described in the next two sections.

2.2 Hardware Components

The Powercast wireless power charger and receiver [12]
are used in our prototype system. As shown in Fig. 2,
a Powercast charger is installed on an Acroname Garcia
robot [4] to become the MC, and each TelosB sensor is
equipped with a Powercast receiver. When the Garcia robot
moves at 1 m/s (used in our experiments), its power con-
sumption is about 8 W and the voltage level is in the range

Figure 2: (a) the MC – an Acroname Garcia robot with
a Powercast charger; (b) TelosB motes with Powercast
receivers.

of 5.8 to 9 V. The MC communicates with the energy station
(a PC in our experiments) via an IEEE 802.11b interface.

Energy charging is carried out in the 903-927 MHz band
while sensor nodes communicate in the 2.4 GHz band.
When the MC is charging, its power consumption is 3 W.
The effective amount of power that can be captured by a
receiver varies with the distance between the receiver and
the MC. The relation is shown in Fig. 3, which is obtained
from our field-test results. The antenna gain is 1.15 for both
power charger and receiver. As shown in the figure, the
receiver can receive about 45 mW power when it is 10 cm
away from the charger, meaning that the charging efficiency
is about 1.5%. As the distance increases, the charging effi-
ciency decreases.
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Figure 3: Power captured by the receiver vs. charger-
receiver distance.

2.3 Software Components

The software components are developed based on
TinyOS 2.1 [16] and loaded to each sensor node in the net-
work. Fig. 4 shows the software architecture. The right side
of the figure is the conventional framework in most sensor
networks, while the left side (shaded part) is our designed
Power Management component, which is compatible to and
can be easily integrated with the conventional framework.

The conventional framework adopts the component-
based MAC layer architecture (MLA) [7]. The energy-
efficient UPMA-XMAC [15] (a variation of X-MAC [1] in
TinyOS) is used as the MAC protocol. The routing layer
uses the GPSR protocol. We implement a new Power Man-
agement (PM) component to monitor energy levels and con-
sumption rates of individual sensor nodes and report such
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Figure 4: Software overview where the shaded part is
the new Power Management component implemented in
our system.

information to the energy station. The design goals of the
PM component are to achieve (1) low communication and
memory overheads; (2) easy integration with the conven-
tional framework; and (3) efficient collection of accurate
network-wide energy information. To integrate with the
conventional framework, the PM only requires simple inter-
facing with the application, routing and ADC components:

• After the system is booted up, the application compo-
nent needs to enable the functionality of the PM.

• The PM is allocated a collection message ID for rout-
ing the energy report message to the energy station.

• The PM intercepts forwarded energy report messages
through the intercept interface provided by the routing
layer.

• The PM uses a read interface to connect to the ADC
component to monitor battery voltage level.

In order to adaptively tune the functionality of the PM for
various application scenarios, two additional interfaces are
provided to the application component: the PMConfig in-
terface provides commands to configure energy information
report interval, energy consumption estimation model, and
low energy alarm threshold; the PMInfo interface provides
commands to query current energy level, consumption rate
and estimated lifetime.

Internally, the PM has the following modules:

• The energy monitoring module samples the battery
voltage reading at a user-defined interval.

• The lifetime estimation module estimates the energy
consumption rate and derives lifetime of a node based
the energy information obtained from the energy mon-
itoring module. Users are allowed to select the estima-
tion model. The simple moving average (SMA) and the
exponential moving average (EMA) models are imple-
mented, yet new estimation models customized to spe-
cific battery characteristics (e.g., pure ultra capacitor
energy source) can be added.

• The aggregation management module is responsible
for aggregating the energy information. It records the

most recent energy information about its own and its
descendent nodes on the routing tree, and periodically
generates an aggregated report to send to its parent
node. Particularly, the aggregated report only contains
the energy information about the k shortest-lifetime
nodes known to this module.

• The core module processes intercepted report mes-
sages, triggers the aggregation management module to
generate aggregated energy information reports, and
updates the settings of the PM based on user’s request.

3 The Charging Problem and Algorithms

As mentioned in the previous section, based on the col-
lected energy information, the energy station runs a charg-
ing algorithm to plan the charging activities for the MC, i.e.,
to determine the sequence of nodes to be charged and the
amount of energy to be charged to each node. In this sec-
tion, we formally state the charging problem that the energy
station tries to solve (which is NP-complete) and present
two heuristic charging algorithms to address the issue.

3.1 Formulation of the Charging Problem

Suppose Graph G = (V, E) represents the topology of a
static sensor network, where each vertex stands for a sensor
node and the length of an edge stands for the distance be-
tween the nodes connected by it. Suppose all sensor nodes
have the same battery capacity Es. In other words, the total
amount of energy that can be stored in a sensor node’s bat-
tery is Es. For each sensor node i (i ∈ V ), let ei and cri

denote its residual energy and energy consumption rate, re-
spectively. There is a mobile charger (MC) in the network
and its distance to each sensor node is known. The MC
carries a battery of capacity Ec. When the MC charges a
sensor node, it consume Λc power while the power received
by the sensor node is ηΛc where η is called the charging
efficiency. The MC moves at the speed of v and the power
consumption for its movement is Λm.

We study a particular charging problem whose goal is
to find an optimal charging sequence for the MC, denoted
as S = 〈(n1, ct1), · · · , (n|S|, ct|S|)〉, where 〈nj , ctj〉 (j =
1, · · · , |S|) represents that node nj is charged in the jth step
for a period of ctj time, such that the network lifetime is
maximized. Here, the network lifetime refers to the time
when the first sensor node in the network uses up its energy.
Table 1 summarizes the notations used in the formulation of
the charging problem.

3.2 NP-Completeness of the Charging
Problem

By reducing the NP-Complete Traveling Salesman Prob-
lem (TSP) to the above charging problem, we can prove that
the charging problem is also NP-Complete. The decision
versions of the charging problem and the TSP problem are
as follows.
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Table 1: Notations Used in the Charging Problem For-
mulation

notation meaning

cri energy consumption rate of sensor node i
ei residual energy of sensor node i
Es battery capacity of a sensor node

Ec battery capacity of the MC

Λc the MC’s charging power consumption

η the MC’s charging efficiency

Λm the MC’s moving power consumption

v the MC’s moving speed

• Decision version of the charging problem: Given a net-
work G = (V, E), the sensor node behavior (charac-
terized by Es, ei and cri), and the MC behavior (char-
acterized by Ec, Λc, Λm, v and η), the question is
whether there exists a charging sequence S with which
the network lifetime can reach at least T .

• Decision version of the TSP problem: Given a network
G′ = (V ′, E′), the question is whether there exists a
visiting sequence (i.e., tour) that covers all nodes in V ′
and has a length of at most D.

Theorem 3.1. The decision version of the charging prob-
lem is NP-complete.

Proof. (sketch) Firstly, given a charging sequence S, we
can verify whether the network lifetime can reach T with S
by simulating each charging operation. This takes O(|S|)
steps. Therefore, the charging problem belongs to NP.

Next, we show that any instance of TSP can be reduced
to an instance of the charging problem. Letting 〈G′ =
(V ′, E′), D〉 be an arbitrary instance of TSP, an instance of
the charging problem 〈G, Es, ei, cri, Ec,Λc,Λm, v, η〉 can

be constructed as follows:1

• G = G′, cri = δ, ei = (D + |V |) ∗ δ, Es = ei + Λc;

• η = 1, Λm = 1, v = 1, Λc = |V | ∗ δ, Ec = Λm ∗D +
Λc ∗ |V |;

• T = D + 2 ∗ |V |.
Here, δ is a small positive value. The following two steps
show that these two instances are equivalent.

Step I: Suppose there is a tour 〈n1, n2, · · · , nm〉 (ni ∈
V ′), which covers all node in V ′ and has a length of at most
D, for the above TSP instance. Then, a charging sequence
S = 〈(n1, 1), · · · , (nm, 1)〉, where node ni is charged in

the ith step for one time unit, can be constructed for the
above instance of the charging problem. The charging op-
eration is valid due to the facts that (1) the MC’s energy
capacity Ec is large enough to support the moving and
charging operations; and (2) each node can be charged for
one time unit before the capacity ceiling of its battery is

1In both instances, the salesman and the MC start from the same posi-

tion.

reached. With this charging sequence, the lifetime of each

node is extended by at least Λc∗η∗1
cri

= |V |. Since the sum

of the MC’s moving time ( D
v = D) and the total charging

time (1 ∗ |V | = |V |) is equal to the initial nodal lifetime
( ei

cri
= D + |V |), we know that the network can survive for

at least T = D + 2 ∗ |V | time with the charging sequence.
Hence, the above instance of the charging problem also has
a positive answer.

Step II: Conversely, if there is a charging sequence that
extends the network lifetime to T = D + 2 ∗ |V |, each
node must be charged for at least one time unit since the
initial nodal lifetime is only D + |V |. This means that each
node must be visited at least once. Excluding the charging
energy consumption, the MC has at most Ec−Λc∗1∗|V | =
Λm ∗ D energy for moving, which can be used to traverse
a distance of at most D. Therefore, there exists a tour that
visits every node and the length of the tour is at most D.

As the TSP is a well-known NP-complete problem, the
charging problem is also NP-complete.

3.3 Heuristic Charging Algorithms

In this section, we present two heuristic algorithms to ad-
dress the difficult charging problem. As the lifetime of the
network is the same as the lifetime of the first sensor node
that uses up its battery energy, a naive algorithm is to always
charge the node with the shortest lifetime to its battery ca-
pacity. Unfortunately, this may cause the MC to move back
and forth between nodes, which could incur large move-
ment overhead. The proposed greedy and greedyPlus charg-
ing algorithms aim to reduce the movement overhead.

3.3.1 Greedy Algorithm

The greedy algorithm is designed to find a charging se-
quence with which the lifetime of the network can be pro-
longed as much as possible while incurring less movement
than the naive algorithm. It works as follows. All sensor
nodes are sorted according to the lifetime in the ascend-
ing order. Let us denote the sorted list that contains the
k shortest-lifetime nodes as 〈(n1, l1), · · · , (nk, lk)〉, where
(ni, li) represents node ni with a lifetime of li if it is not
being charged, and li ≤ li+1 (1 ≤ i ≤ k − 1). Clearly,
l1 is the network lifetime if there is no charging. Then, as
shown in Algorithm 1, a charging sequence can be found in
the following manner:

• Loop 1: The algorithm tries to extend the network life-
time from l1 towards l2. In other words, the target net-
work lifetime is set to l2, and if a feasible charging se-
quence can be found (i.e., without violating the battery
capacity of a sensor node, or depleting the battery en-
ergy of the MC in the mid of the sequence) to charge
node n1 so that the network lifetime is extended be-
yond l1, the algorithm continues to Loop 2; otherwise,
it halts. In this algorithm, the charging behavior of
the MC is greedy in the sense that, once the MC starts
charging a sensor node, it keeps charging the node for
as long time as possible.
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• Loop j (2 ≤ j ≤ k): The algorithm tries to extend
the network lifetime from l1 towards lj+1. Similarly,
if a feasible charging sequence can be found to charge
nodes n1, n2, · · · , nj so that the network lifetime is
extended beyond l1, the algorithm continues to the next
loop; otherwise, it halts.

Algorithm 1 The Greedy Algorithm

Input:

• P : position of the MC

• α: remaining energy in the MC’s battery

• 〈(n1, l1), · · · , (nk, lk)〉: list of k shortest-lifetime nodes

sorted in the ascending order of their lifetime

• G = (V, E), Es, Λc, Λm, v, η, cri (i = 1, · · · , k): other

system parameters

Output: a charging sequence

1: S∗ ← ∅ /* the best charging sequence found so far */
2: L∗ ← l1 /* network lifetime achieved with S∗ */
3: for j = 1 to k do
4: if j = k then
5: T ← Es

max1≤i≤jcri
/* target network lifetime */

6: else if lj = lj+1 then
7: continue
8: else
9: T ← lj+1 /* target network lifetime */

10: for each permutation of 〈n1, · · · , nj〉: 〈n′
1, · · · , n′

j〉 do
11: (P̃ , α̃, ẽn′

1
, · · · , ẽn′

j
) ← (P, α, en′

1
, · · · , en′

j
)

12: S ← ∅, L ← 0
13: for w = 1 to j do
14: ChargeTime ← [

(T − lw) × crn′
w

] /
[η × Λc]

/* time needed to charge n′
w to extend lifetime to T */

15: NodeCapTime ← [
Es − ẽn′

w

] /
[η × Λc]

/* time needed to charge n′
w to full battery capacity

*/
16: MCCapTime ←[

α̃ − distance(P̃ , n′
w) × Λm/v

] /
Λc

/* maximum time that can be spent to move to and
charge n′

w with the remaining energy at the MC */

17: DeadTime ← min
w+1≤x≤j

(
ẽn′

x
crn′

x

− distance(n′
w,n′

x)

v

)
/* maximum time that can be spent to charge n′

w s.t.
no other node dies before the MC can charge it */

18: tw ← min(ChargeTime, NodeCapTime, MCCapTime, DeadTime)
/* tw is the actual time that the MC will charge n′

w */
19: if tw < 0 then
20: break
21: Update P̃ , α̃, ẽn′

1
, · · · , ẽn′

j

22: (n′
w, tw) is appended to S

23: L is computed for the charging sequence S
24: if L > L∗ then
25: S∗ ← S, L∗ ← L
26: if (no better charging sequence found in this iteration) then
27: return S∗

28: return S∗

At the end of the above procedure, among all the found
feasible charging sequences, the one that extends the net-
work lifetime the most is selected by the algorithm. The
complexity of this algorithm is O(k2k!). Simulation results
show that the algorithm can prolong the network lifetime
effectively with a relatively small k, e.g., k = 5, while the
performance improvement by increasing k further is not sig-
nificant. Therefore, the greedy algorithm is simple to imple-
ment and effective in practice. Note that when k = 0, the
greedy algorithm reduces to the special case when there is
no charging in the network, while when k = 1, the greedy
algorithm is equivalent to the naive algorithm.

One potential issue with the greedy algorithm is that the
greedy nature of the algorithm (i.e., the MC keeps charg-
ing a sensor node for as long time as possible once started)
may degrade the system performance under certain circum-
stances. Fig. 5 illustrates an example scenario when the
greedy algorithm does not perform well. In this example,
at time 0, sensor nodes n1, n2 and n3 have the residual en-
ergy of 1800 J, 1800 J and 7200 J, respectively, and they
have the same energy consumption rate of 0.01 J/s. The
battery capacity of a sensor node and the MC is 10000 J
and 270000 J, respectively. Suppose k = 3, Λc = 3 W,
η = 0.02, and the MC movement cost and delay are negli-
gible (i.e., Λc = 0 W, v = ∞).
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Figure 5: An example to illustrate that the greedy algo-
rithm could be improved further: (a) network lifetime is
50 hours with the greedy algorithm; (b) network lifetime
is 125 hours with more balanced charging.

As shown in Fig. 5(a), with the greedy algorithm, the
MC starts charging n1 at time 0 and continues to time 25
hours when the residual energy of n1 becomes the same as
that of n3 (hence they have the same lifetime as they have
the same energy consumption rate). This action causes the
MC to use up all of its battery energy. As a result, the net-
work lifetime is 50 hours when the residual energy of n2

becomes zero. In comparison, if the MC takes a less greedy
approach that charges n1 for 12.5 hours and then charges n2

for 12.5 hours, as shown in Fig. 5(b), the network can sur-
vive much longer for 125 hours in total, resulting in a 250%
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performance improvement. Motivated by this observation,
we revise the greedy algorithm to allow the MC to charge
sensor nodes in a more balanced manner. The revised algo-
rithm is named the greedyPlus algorithm.

3.3.2 GreedyPlus Algorithm

In the greedy algorithm, the MC tends to charge a node in
a greedy manner towards the target lifetime T without con-
sidering whether the lifetime of other nodes can also be ex-
tended to T . In fact, as long as one node cannot have its
lifetime extended to T , the network lifetime cannot reach
T , meaning that some of the energy being charged to the
current node may be wasted. The greedyPlus algorithm im-
proves upon the greedy algorithm by applying binary search
to find a more suitable target network lifetime at each loop,
which is a target achievable by all sensor nodes in the net-
work. Fig. 6 shows the flowchart of the greedyPlus algo-
rithm, which is based on the pseudo-code of the greedy al-
gorithm in Algorithm 1. In the flowchart, ε is a small quan-
tity to help define exit conditions for the greedyPlus algo-
rithm.
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Figure 6: GreedyPlus algorithm Flowchart.

4 Experiments

Experiments have been performed on the prototype sys-
tem to evaluate its feasibility and performance.

4.1 Experimental Setup

Nine Telosb sensor nodes are used in the experiments.
Each node is powered by two 1.5V 2000mAh Alkaline
rechargeable batteries. The power receiver in the node can
charge the batteries when it receives energy from the MC,
and the charger-receiver distance varies from 5cm to 20cm.

The sensor nodes are deployed in the line or grid topol-
ogy as shown in Fig. 7, where neighboring nodes are two
meters apart and the CC2420 radio transmission power is
set to level 3 which results in a communication range of
about 3.5 meters. In both topologies, node 1 works as the
sink connected to a PC with stable power supply and there-
fore it does not need to be charged.

) * + , - . / 0 1

) * +

, - .

/ 0 1

Figure 7: Experimental topologies.

Before each experiment, the batteries on each node are
pre-charged to a certain voltage level up to 2.9 V (normal-
ized to energy level 100% in the following figures), and the
energy of a mote is assumed to be depleted when the voltage
level of its batteries drops to 2.7 V (normalized to energy
level 0% in the following figures).

During the experiments, each sensor node sends out a
data packet every 16 ∼ 20 seconds and an energy report ev-
ery 10 minutes. The UPMA-XMAC protocol running on
each sensor node sets its low power listening interval to
2 seconds. Every 10 minutes, the energy station runs the
charging algorithm to adjust the charging plan.

4.2 Evaluation Results

Fig. 8 and Fig. 9 show the evaluation results for the line
and grid topologies, respectively. We measure (1) the initial
energy level of individual nodes; (2) the lifetime of the net-
work and individual nodes when there is no energy charging
(tagged as no charge in the figures) and when the greedy-
Plus algorithm is used; and (3) the distribution of charging
time among individual nodes.

4.2.1 Evaluation Results for Line Topology

As shown in Fig. 8(b), the greedyPlus algorithm signifi-
cantly improves the network lifetime from 8.3 hours to 15.3
hours, an increase of 84%. This is accomplished by charg-
ing more energy to nodes that have shorter lifetime if there
were no charging. Particularly, nodes 2, 3 and 4 have higher
energy consumption rates than other nodes because they
forward more data packets; node 6 has low energy level at
the beginning of the experiment. Hence, these nodes have
shorter lifetime than others when there is no charging. Their
lifetime (especially the lifetime of node 2) becomes the bot-
tleneck of the network lifetime. As shown in Fig. 8(c), the
greedyPlus algorithm charges more energy to these nodes to
extend their lifetime and consequently improve the network
lifetime.

4.2.2 Evaluation Results for Grid Topology

For the grid topology, as shown in Fig. 9(b), the greedyPlus
algorithm improves the network lifetime from 7.2 hours to
15.92 hours, an increase of 120%. Nodes 2, 4 and 6 are
charged the most as they have a higher energy consump-
tion rate or a lower initial energy level. Node 5 is seldom
charged due to its high initial energy level and node 7 is
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Figure 8: Evaluation results for line topology.

seldom charged for its being a leaf node with low energy
consumption rate. Also being leaf nodes, nodes 8 and 9
however receive more charging than node 7 because they
have less initial energy than node 7.

4.2.3 Summary

The evaluation results have demonstrated that, in a sensor
network where motes run on different initial energy sup-
plies and heterogeneous consumption rates, the proposed
wireless charging system can improve the network life-
time through accurately identifying the bottleneck nodes
and charging them to extend their lifetime.

4.3 Discussion

The experiments not only verify the feasibility and ef-
fectiveness of our proposed design, but also demonstrate
some phenomena that are hard to discover through theoret-
ical derivations or simulations. Such discovery is helpful in
enhancing our design and making it more effective in prac-
tice. As an example, we present in the following the phe-
nomenon of abnormal voltage level reading which happens
during and immediately after a node being charged. We
also analyze its effects on the charging performance, and
describe our solution to address the issue.
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Figure 9: Evaluation results for grid topology.

Fig. 10(a) displays a charging trace in one experiment.
Corresponding to this charging trace, Fig. 10(b) demon-
strates the changes of node 2’s voltage readings. Fig. 10(c)
shows the changes of node 2’s voltage readings when there
is no charging. It can be observed in Fig. 10(b) that, when
node 2 is being charged (e.g., during time 25289 ∼ 26516
seconds), its voltage reading increases very fast. However,
the fast increase is “false” and not stable because, as also
shown in Fig. 10(b), immediately after the charging phase
ends (e.g., during time 26516 ∼ 30491 seconds), the volt-
age reading drops much more rapidly than the normal case
shown in Fig. 10(c).

If such instant measurements of energy levels are used
directly as the input to the charging algorithm, the algorithm
may output less efficient charging decisions. Specifically, a
measured fast but false increase of energy level may mis-
lead the algorithm to believe that the currently charged node
has been charged with sufficient amount of energy and de-
cide to charge another node; but immediately after the MC
leaves, the fast drop of energy level will be measured, which
may force the charging algorithm to schedule the MC back
to charge the node again. The back-and-forth scheduling
of the MC can waste energy and hence degrade the perfor-
mance of the charging system.

To address this issue, in our design and implementation,
when a node is being charged, its energy level that is just
measured is not used directly as the input to the charging
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Figure 10: Abnormal voltage reading during and imme-
diately after a node being charged.

algorithm. Instead, its energy levels measured during a cer-
tain recent time frame (e.g., the past 10 minutes) are aver-
aged and then scaled down by another certain constant (e.g.,
100) to remove the abnormally sharp increase of its voltage
reading during the charging time. According to the exper-
iments, the benefit brought by this averaging and scaling
technique is significant. Particularly, the average improve-
ment of network lifetime is about 84% and 120% for the
line and grid topologies respectively when the technique is
adopted, while the improvement is only about 40% if the
technique is not used.

5 Simulations

Extensive simulations have been conducted to evaluate
the proposed system in large-scale networks.

5.1 Simulation Setup

The proposed system is simulated in a custom simulator.
In the simulations, 100 nodes are randomly deployed in a
500 m × 500 m field. Every sensor node is a data source

which reports data packets to the sink at the rate of λ. It
also sends one energy report every hour; hence, the energy
station runs the charging algorithm once every hour.

The routing algorithm adopted in the simulations uses

metric Ci = Tri ∗u1− ei
Es [9] to select routes. In the metric,

u is a system parameter, ei is node i’s residual energy and
Tri is the sum of energy consumption for packet transmis-
sion and reception at node i. This metric is a combination
of the minimum energy (Trij) and max-min residual energy

(u1− ei
Es ) metrics. When u = 1, the metric is reduced to the

minimum energy (ME) metric which is used to find the path
that can minimize the network-wide energy consumption;
when u > 1, it is reduced to an energy-aware (EA) metric
that aims to balance energy consumption among all nodes
in the network. We let u = 1 or u = 100 in the simulations.
Table 2 lists other default simulation parameters.

Table 2: Default Simulation Parameters
parameter value

communication range of a sensor node(m) 70
battery capacity of a sensor node: Es (KJ) 10
battery capacity of MC: Ec (KJ) 2000
data packet generation rate: λ (packets/hour) 12
the MC’s charging power consumption: Λc (W) 3
the MC’s moving power consumption: Λm (W) 50
the MC’s moving speed (m/s) 1
the sensor’s tx power consumption (J/packet) 0.05
the sensor’s rx power consumption (J/packet) 0.06
system parameter k 5
the MC’s charging efficiency: η (%) 1.5

the number of sinks 4

the routing metric ME

5.2 Simulation Results

We measure the network lifetime of the naive, greedy
and greedyPlus algorithms under different situations by
varying the number of sinks, the system parameter k and
the charging efficiency η.

5.2.1 Network lifetime with varying number of sinks

We first measure the lifetime when the number of sinks
changes. If there are n sinks, the whole network field is di-
vided evenly into n areas and one sink is placed at the center
of each area. Fig. 11(a) shows that all three algorithms can
significantly improve the network lifetime (by at least 80%)
regardless of the number of sinks. Among these algorithms,
the greedy and greedyPlus algorithms outperform the naive
one as they can significantly reduce energy consumption on
MC’s movement, which is demonstrated in Fig. 11(b), and
therefore can use more energy to charge sensor nodes.

It is also found that, as the number of sinks increases, less
improvement of network lifetime is achieved by the charg-
ing algorithms. Particularly, the greedyPlus algorithm ex-
tends the network lifetime by 117% when there is one sink,
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Figure 11: Effects of the number of sinks.

but the ratio drops to 88% when there are 9 sinks. This
is due to the following reasons. The energy consumption
rates of different sensor nodes become more even as the
number of sinks increases. With the increase, more sen-
sor nodes need to be charged to extend the network life-
time. As the MC’s charging capacity and efficiency are
bounded, increasing the number of charged sensor nodes
decreases the amount of energy charged to each of these
nodes. Consequently, the overall improvement in network
lifetime decreases. The improvement of network lifetime is
further reduced because the MC has to consume more en-
ergy in movement as it needs to charge more nodes, which
decreases the amount of energy that can be used for charg-
ing sensor nodes. The phenomenon indicates that, the less
even are the energy consumption rates among sensor nodes,
the fewer sensor nodes need to be charged and the better
performance can be achieved by the charging algorithms.

5.2.2 Network lifetime with varying k

The network lifetime extended by the greedy and greedy-
Plus algorithms does not increase linearly or significantly as
k increases. This phenomenon is attributed to the following
reasons. If the number of bottleneck nodes that constrain
the network lifetime is less than k, increasing k does not
improve the network lifetime as only the energy informa-
tion about bottleneck nodes is useful for charging planning.
If the number of bottleneck nodes is larger than k, the in-
formation of all the bottleneck nodes can still be gradually
obtained and considered by the charging algorithms as the
algorithms are run once every certain time interval and each
running of the algorithm is based on the energy informa-
tion of the k shortest-lifetime sensor nodes at the moment.
As shown in Fig. 12(b), a larger k does help in reducing
the movement energy consumption as the information of
more nodes is considered in charging planning. However,
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Figure 12: Effects of system parameter k.

the benefit brought by increasing k is not significant and the
benefit decreases as k gets large. In the simulations, we let
k = 5 by default.

5.2.3 Network lifetime with varying η

Due to the relatively low value of η (i.e., 1.5%) in previous
simulations, even when all of Ec = 2000 KJ energy is used
by the MC for charging, only 30 KJ can be received by sen-
sor nodes. Hence, the charging efficiency has been a major
constraint on improving the network lifetime. Fig. 13 shows
that the network lifetime can be significantly increased as η
increases. Particularly, the greedyPlus algorithm can extend
the network lifetime by about 100% with η = 1.5% and the
extension ratio rises to 200% when η = 6%.
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Figure 13: Effects of charging efficiency η.

The charging efficiency can be increased through ad-
vance in charging technology. In fact, it can be increased
through delicate sensor node deployment such as the aggre-
gated sensor node deployment strategy proposed by Tong et
al. [18]. Thus, when combined with the aggregated node
deployment strategy, the performance of the proposed wire-
less charging system may be improved further.
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5.2.4 Energy-efficient Routing vs. Energy-balanced
Routing

When using the ME metric, the routing algorithm adopted
in the simulations becomes an energy-efficient algorithm as
it tends to find routes that consume the least total energy.
When using the EA metric, the routing algorithm becomes
an energy-balanced algorithm as it tends to find routes that
distribute communication workload among all sensor nodes
as evenly as possible. In a non-rechargeable network, the
energy-balanced routing algorithm outperforms the energy-
efficient algorithm in terms of network lifetime, but this
may not be always true when sensor nodes can be charged.
Extensive simulations have been conducted to study which
of these two types of algorithms is more beneficial to our
proposed system.
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Figure 14: Effects of the routing algorithm.

In our simulations, Ec (the total amount of energy car-
ried by the MC) and η vary, the greedyPlus algorithm is run,
and the achieved network lifetime is measured. The results
are shown in Fig. 14. As shown in the figure, the energy-
balanced algorithm (EA) outperforms the energy-efficient
algorithm (ME) when Ec or η is small; however, ME out-
performs EA when both Ec and η are large. The reasons
behind the phenomena are as follows.

When the ME routing algorithm is used, nodes that are
on multiple routing paths have higher communication over-
head and thus become bottleneck nodes. When η or Ec is
small, some of these bottleneck nodes cannot be recharged
in a timely manner before their energy is used up though
some other nodes may still have lots of energy left, which
results in a short network lifetime. On the other hand, the
EA routing algorithm tends to balance the energy consump-
tion among nodes. With EA, the energy consumption rates
of bottleneck nodes typically are lower than the bottleneck
nodes in the network running ME, and hence their life-
time is also longer. Therefore, the network running EA can
achieve a longer lifetime.

When Ec and η are large, bottleneck nodes in the net-
work running ME are likely to be charged promptly. Hence,
the charging algorithm can effectively balance the lifetime
between bottleneck and non-bottleneck nodes as the EA
routing algorithm does. Moreover, the ME algorithm con-
sumes less network-wide energy than the EA algorithm.
Resulted from these two effects, the network running ME
can achieve longer lifetime than the one running EA.

5.2.5 Network lifetime with varying λ

Fig. 15 demonstrates how much the network lifetime can
be improved by the greedyPlus algorithm, as the date rate
(λ) varies. When λ is small (e.g., λ < 48 packets per
hour), the lifetime improvement is over 100% for both
Ec = 20000KJ and Ec = 2000KJ . However, the im-
provement ratio decreases as λ increases. This is due to the
fact that the charging capability of the MC is determined by
Λc ∗ η (the maximal amount of energy that can be actually
charged to the network per unit of time) and Ec (the to-
tal amount of energy carried by the MC). When λ is small,
Λc ∗ η is large enough to keep the network alive before the

MC runs out of its energy at time Ec

Λc
. Hence, Ec becomes

the major factor that determines the improvement of net-
work lifetime, and a larger Ec brings more improvement
in network lifetime. On the other hand, when λ is large,
Λc ∗ η becomes the major factor that determines the im-
provement of network lifetime, as some bottleneck nodes
may die much earlier before the MC runs out of its energy.
In this case, increasing Ec does not help in prolonging the
network lifetime.
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Figure 15: Effects of λ on the performance of the
greedyPlus algorithm.

5.2.6 Summary

To summarize, we have the following observations from
simulation results:

• Wireless charging is effective in prolonging the net-
work lifetime.

• Through careful movement planning, the proposed
greedy and greedyPlus algorithms consume less en-
ergy for movement and thus have more energy for
charging to extend the network lifetime. Though these
algorithms have a complexity exponential with system
parameter k, a small k can generate decent results.
Hence, these algorithms are practically efficient.

• The improvement of the network lifetime becomes
more significant as the charging efficiency increases.
This observation is encouraging as the charging ef-
ficiency can be improved through not only advance
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in charging technology but also combining our pro-
posed system with the aggregated node deployment
strategy [18].

• With the proposed system, the energy-balanced rout-
ing algorithm may not always outperform the energy-
efficient algorithm in terms of prolonging the network
lifetime. In general, when the MC is powerful (i.e.,
large Ec and η), the energy-efficient routing algorithm
is more beneficial; when the MC has small Ec or η, the
energy-balanced routing algorithm is more beneficial.

• The network lifetime improved by the proposed sys-
tem is bounded by two factors: Λc ∗ η and Ec. When
the data generation rate at sensor nodes is low, the en-
ergy carried by the MC (Ec) determines the network
lifetime improvement, while for sensor network appli-
cations with high data rates, the charging power (Λc)
and efficiency (η) of the MC become the more dom-
inant factor in determining the network lifetime im-
provement.

6 Related Work

Recent research work on harvesting environmental en-
ergy such as solar [3, 6], wind [11], thermal [14] and vi-
bration [5] have shown great promise of addressing the bat-
tery energy limitation problem in the sensor network. The
work presented in this paper is different from these previ-
ous results in that we employ a controllable energy source
(i.e., the mobile charger) to charge sensor nodes. There-
fore, we can proactively adjust the charging pattern rather
than passively adapt to the environmental energy availabil-
ity. Tong et al. [17, 19] proposed a node reclamation and
replacement strategy (NRR) which makes use of a mobile
repairman to periodically replace low or no energy sensors
with full energy ones. The reclaimed sensors are brought
back to the base station for recharging. The NRR scheme
requires the robot to be able to locate the sensor position
accurately enough for replacement. On the other hand, the
wireless charging technique used in this paper is more tol-
erant to localization inaccuracy since it can charge a node
from a distance range.

Another important research area concerns exploiting
sink mobility to alleviative the traffic aggregation burden
from a fixed set of sensor nodes near the sink to the periph-
eral nodes [10, 13]. Our work tries to extend the system
lifetime from a different perspective by taking advantage of
a mobile charger (sink is static) rather than a mobile sink.

7 Conclusion

We propose a wireless charging system for sensor net-
works. We present the design and implementation of the
system, especially study the charging planning problem and
propose several heuristic algorithms. Experiments are con-
ducted on an implemented prototype of the proposed sys-
tem to evaluate the feasibility and the effectiveness of the

system on prolonging the sensor network lifetime. Simu-
lations are also conducted to evaluate the performance of
the proposed system in large-scale networks and to study
the effects of various configuration and design parameters.
The results verify that the proposed system can extend the
sensor network lifetime significantly.
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