

Carbon Negative Energy

Robert C. Brown (ME) and David Laird (Agronomy) Iowa State University

Despite wide spread concern about global climate change, **Congress** failed to the pass greenhouse gas egislation in 2010. Why?

How can you have economic prosperity without greenhouse gas emissions?

Can we turn this paradigm on its head?

Key Features of a Carbon Negative Economy

- Fixes carbon from the atmosphere
- Sequesters carbon in the biosphere (vs. the geosphere) potentially providing ecosystem services
- Generates co-products useful to human society (providing positive contribution to national economies)

Our Concept: Pyrolysis-Based Carbon Negative Energy

- Terrestrial plants or aquatic species fix carbon as <u>biomass</u>
- Biomass is harvested and pyrolyzed to <u>bio-oil</u> <u>and biochar</u>
- Bio-oil is used as energy product for power production or upgraded to drop-in fuels, providing <u>net economic return</u>
- Biochar is returned to croplands where it recycles nutrients, improves soil fertility, and <u>sequesters carbon</u>

The ISU Team

Thrust Area	Faculty member	Department	Role
Carbon	Ken Moore	Agron	Cellulosic biomass production
fixation	Martin Spalding	GDCB	Photosynthetic metabolism
Carbon	Robert Brown	ME	Thermochemical conversion
negative fuels	Brent Shanks	CBE	Catalytic upgrading
Carbon	David Laird	Agron	Biochar utilization
sequestration			
Carbon	Bruce Babcock	Econ	Energy economics and policy
Policy	Dermot Hayes	Econ	Economic considerations

ISU Experience in Pyrolysis

ISU Fractionating Bio-Oil Recovery System

ISU Experience in Technoeconomic Analysis

Biomass Pyrolysis and Bio-Oil Upgrading (2000 MTPD)

ISU Experience in Biochar

Outline of Iowa CNE Project

- Demonstrate CNE at ISU
 - Instead of producing motor fuel, use bio-oil as substitute for coal at physical plant
 - Apply biochar to farm fields in cooperation with Soybean Promotion Board
- Produce bio-oil and biochar at Harry Stine's pyrolysis pilot plant (after retrofit)

Bio-Oil Co-Firing Fuel (30% "pyrolytic lignin"+ 70% coal)

Partnership with Harry Stine

- Stine has informally collaborated with ISU for several years
 - Demonstrated biochar on his farms
 - Experimented with prototype 30 tpd fast pyrolyzer
- Stine has agreed to:
 - Let ISU use his pyrolyzer for research
 - Pay for retrofits to pyrolyzer
 - Provide 1-2 operators
 - Provide discounted feedstock
 - Work with ISU on field demonstrations

Additional Project Support

- Iowa Energy Center has provided funds for ISU to design pyrolyzer retrofits
- State of Iowa "Leading the Bioeconomy" funds provided to:
 - Install and operate equipment to produce bio-oil co-firing fuel (BCF) and store biochar
 - Transport and handle BCF and biochar
 - Initiate field trials with biochar

Heating Value of Co-Fire Fuel Almost Identical to Coal

Impact and Abrasion Resistance of Co-Fire <u>Pellet</u> Superior to Coal

Ash Fusibility of Co-Fire Fuel Comparable to Coal

Carbon Negative Energy Pathway Being Pursued

Comparing CO2 Emissions

Fuel Туре	kg CO2eq/kg oil
Residual Oil	0.543
Fuel Oil	0.622
Bio-fuel oil (with biochar sequestered	
to agricultural lands)	-2.85

Note: Bio-fuel oil is the heavy ends of bio-oil; the light ends are used for acetate-based products

Working with ISU Physical Plant

- David Miller and Jeff Witte indicate that bio-oil co-fire fuel (BCF) would require no retrofit of ISU boilers
- Agreed to have evaluate co-firing performance of BCF using their boiler model
- President Leath has endorsed the project

Questions?

