IOWA STATE UNIVERSITY **Agricultural and Biosystems Engineering**

Michelle Friedmann – Senior in Biological Systems Engineering

Evaluation of Stirring to Control Lesser Grain Borers in Stored Wheat

Introduction

Wheat is the mostly widely grown crop in the world and a food source for billions of people. Fulfilling the food demand of an increasing world population is of growing concern. One-third of food produced is lost during postharvest operations.

The lesser grain borer (LGB), Rhyzopertha dominica (Fig. 1), is a large contributor to postharvest losses (PHLs) in wheat. The lesser grain borer feeds on stored wheat, decreasing wheat quality, increasing dry matter loss, and decreasing nutritional value. An approach that may be effective for use by smallholder farmers to control LGBs is physical disturbance of stored grain.

Disturbance is an approach that is affordable, simple, and environmentally friendly since it does not require use of any chemicals. Stirring devices are often used in grain bins to assist in drying. I hypothesized that physical disturbance by stirring interferes with LGB reproduction and could control LGB infestations, thereby reducing PHLs and increasing the world's food supply.

Objective

The objective of this experiment was to determine the effect that disturbing LGB-infested wheat by stirring has on the population density of lesser grain borers and on wheat quality.

Figure 1: Lesser Grain Borer

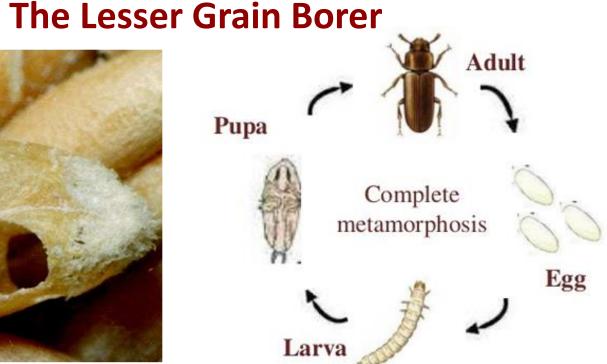


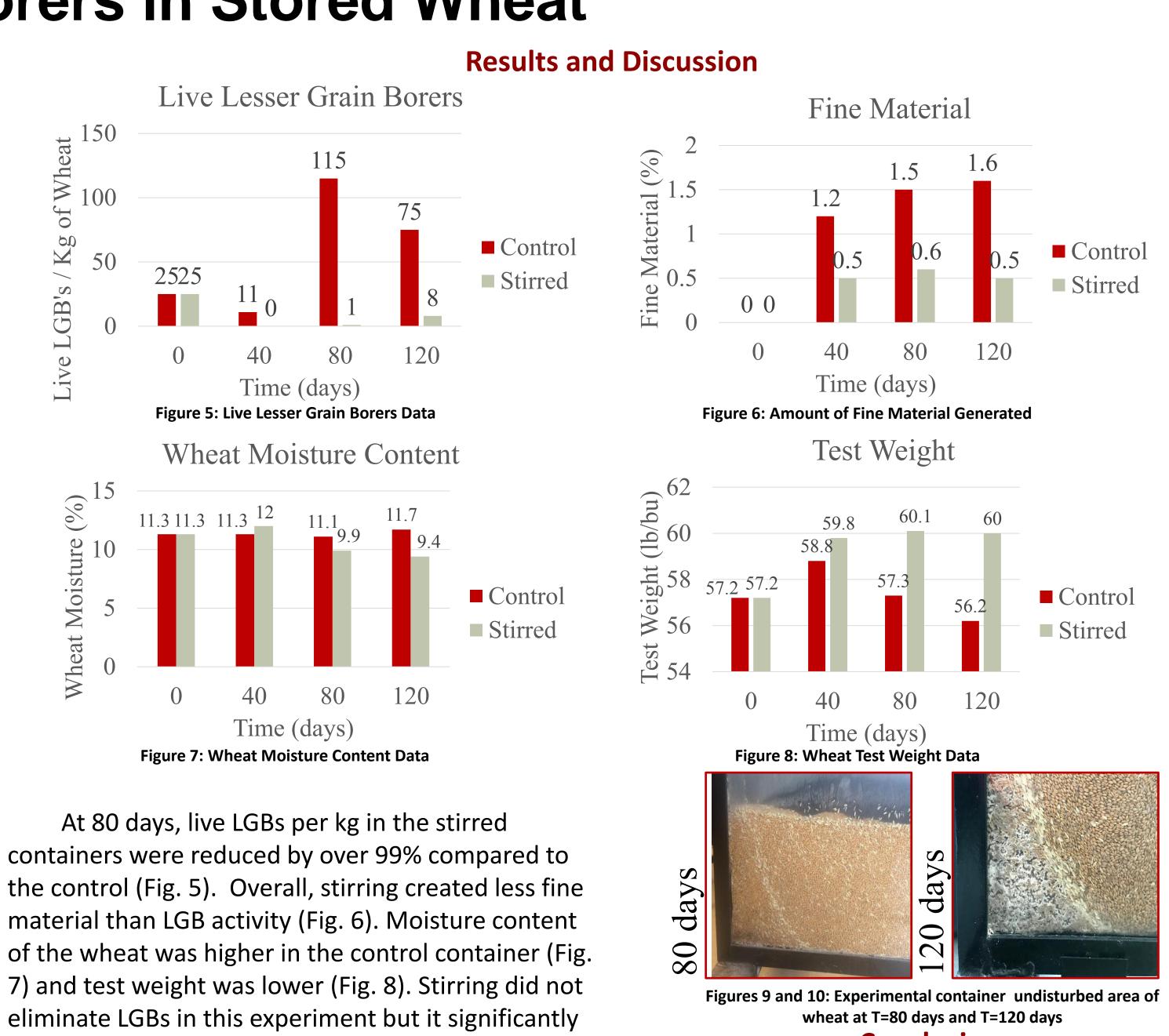
Figure 2: Lesser Grain Borer Life Cycle

Each female grain borer deposits ~500 eggs loosely onto kernels of grain (Fig. 2). After ~32 days, larvae hatch and eat into wheat kernels where they complete their development. After the larvae develop within wheat kernels, adult LGBs emerge by chewing through the outer grain layers. Adults live up to 240 days (Akol et al., 2011). LGBs feed on the grain and leave behind empty husks and grain dust (fine material).

Figure 3: Experimental Stirring Container **Figure 4: Control Container** Six containers, three equipped with vertical stirring augers (Fig. 3) and three without (Fig. 4), were used to contain the wheat. The containers and stirrers that were designed and built by Sukup Manufacturing Company based on their Fastir stirring machine product.

Merschman Millie 4, a soft red winter wheat variety, was used. Each container was loaded with 28 kg (61.7 lb) of wheat at 11.3% moisture and test weight of 57.3 lb/bu.

Lesser grain borers were obtained from the USDA ARS Center for Grain and Animal Health Research Center located at Kansas State University. Adult unsexed lesser grain borers were placed into each loaded container at a rate of 25 borers per kg of wheat.


The experimental design consisted of two treatments: unstirred and stirred wheat. Three replications of each treatment were conducted using three experimental and three control containers in a completely randomized design. The experiment was conducted in a 27°C room to encourage activity and growth of the LGBs.

Experimental wheat containers were auger stirred one damage to wheat. length of the container every 12 hours. Wheat samples were Stirred containers still had LGBs at T=80 days likely because all the wheat in the container was not drawn at 40, 80, and 120 days using a grain probe in three different locations in each container. For each measurement, disturbed equally by the stirring auger. There were LGB mortality was determined by sight. Samples were analyzed pockets of undisturbed grain where the LGBs were for moisture content, fine material, and test weight. After 80 unaffected by the treatment. At T=120 days, the days, the stirring mechanism was disabled and the containers undisturbed pocket contained much more damage were allowed to sit undisturbed for another 40 days when and debris compared to the disturbed area in the samples were drawn again. grain (Figs. 9 and 10).

Methods and Materials

Experimental Design

reduced the LGB population and minimized the

Honors Poster Presentation December 5, 2018

Conclusion

Overall, stirring is an effective method of reducing the live Lesser Grain Borer population in stored wheat. Stirring did not eliminate Lesser Grain Borers in this experiment but it significantly reduced the Lesser Grain Borer population and minimized the damage to wheat.

Reference

Akol, A. M., Talwana, H. A., & Mauremootoo, J. R. (Eds.). (2011). Rhyzopertha dominica (Fabricius) - Lesser Grain Borer. Retrieved February 22, 2018.