Introduction to Systems Thinking

Chris Rehmann (<u>rehmann@iastate.edu</u>) Diane Rover (<u>drover@iastate.edu</u>)

Funding: National Science Foundation

IOWA STATE UNIVERSITY

Our systems thinking module is...

Broadly applicable

Amenable to short treatments

New for students

Fun

Motivation

Abundant clean water

Renewable clean energy

Safe roads and bridges

Access to modern healthcare

Protection from disasters

Sustainable ag & manufacturing

What is systems thinking?

<u>Exercise</u>

Two people take 2 hours to dig a hole 5 feet deep.

How deep would the hole be if 4 people dug for 6 hours?

What is systems thinking?

More realistic answers?

- 1. Deeper soil layers might be harder to excavate.
- 2. The job might not have the proper permit.
- 3. The people might refuse to work for 6 hours straight.
- 4. A lack of ladders or shovels or space might prevent progress.
- 5. They might hit bedrock or the water table (or gold or oil or ancient relics or an underground cable or vicious carnivores).
- 6. The maximum depth might have been specified as 5 feet.
- 7. Greenpeace or the neighbors might protest.
- 8. The workers might not have proper training in ABET outcome d.
- 9. The work might be scheduled for a religious holiday.
- The original workers might have had excavating equipment.
 Et cetera

What is systems thinking?

- Solving complex, dynamic, ill-defined problems
- Designing systems as well as components
- Communicating with the wider community
- Working with people from other disciplines and cultures
- Meeting social, ethical, and environmental responsibilities while addressing challenges from engineering and science.
- Managing projects and operating within business and political environments

See also <u>http://www.public.iastate.edu/~rehmann/STpaper.pdf</u>

Tools of systems thinking

Rich picture

Causal loop diagrams

Behavior-over-time graphs

Example of the tools: rich picture

Theater operations

Example of the tools: causal loop diagram

Example of the tools: behavior-over-time graph

Sketch trends

(<u>Video</u>)

Rich pictures

What's going on here?

Pictures Connections Facts Subjective information Conflict Structure Process

Exercise: Draw an unsuccessful student

- How did you work together to draw the rich picture?
- How will that interaction benefit students?

Exercise: Evaluate these rich pictures

Did they think broadly? Do the connections make sense? Is there feedback?

	0 = not addressed	1 = minimally addressed	2 = somewhat addressed	3 = adequately addressed	4 = well addressed
Technical content					
Problem	Students do not	Students give a cursory	Students describe the	Students describe the	Students explain why the
description	describe the	description of the	problem briefly but do	problem and motivate	problem is important and
	problem at all.	problem.	not explain how it	the systems approach by	integrate their discussion
			involves 5 of the 7 areas.	explaining how it involves	of the 5 of 7 areas well into
				5 of the 7 areas.	the rest of the talk.
Key variables	Students identify no	Students allude to key	Students identify several	Students identify a key	Students identify a key
	key variable.	variables. Key variables	variables involved in the	variable but other	variable and explain
		are implied.	problem but do not	possibilities seem more	concisely how it captures
			identify the key variable.	fitting.	the essence of the
					problem.
Rich pictures to	Students present no	The rich picture is	The rich picture shows	The rich picture is drawn	The picture is attractive
show connections	rich picture.	carelessly drawn, and the	few elements, and	well. It includes several	and interesting; the
		connections show little	connections are merely	elements from 5 of the 7	connections drawn suggest
		thought.	lines drawn to the key	areas; connections show	careful thought and
			element.	considerable thought.	contemplation based on
					research.
Causal-loop	Students present no	Students present only	Students present several	Students present a CLD	Students present a CLD
diagrams to show	causal-loop	one or two CLDs and they	unconnected CLDs. The	that connects most of the	that connects all of the
relationships	diagrams.	are not connected in any	relationships are	elements in the rich	elements in the rich
		way. Relationships are	reasonable but not	picture and give plausible	picture and argue
		based solely on intuition	supported convincingly.	arguments for the	convincingly for the
		or feeling.		relationships.	relationships using their
					research.
Graphs to show	Students do not	Students present one	Students present a BOT	Students present a BOT	Students present BOT
behavior over time	show behavior over	BOT graph that was	graph and explain the	graph for one scenario	graphs for a few
	time.	drawn hastily and	behavior briefly.	that is carefully	interesting scenarios. The
		without much thought.		contemplated.	graphs illustrate the
					strength of the systems
		1			thinking approach

Applications of the modules

Sophomore seminar: Engr 210X

Learning outcome:

For complex, ill-defined, dynamic problems involving engineering, social, ethical, cultural, environmental, business, and political issues, second-year E2020 scholars will

- Identify connections between subsystems with rich pictures
- Explain relationships with causal-loop diagrams
- Sketch the behavior over time of key variables in the system.

Sophomore seminar: Engr 210X

Assessment

Reflections from students:

- Students knew little about ST before the module and much more after it.
- The module will help in planning projects.
- Multidisciplinary aspects will improve collaboration.
- Students appreciated having tools to express the behavior graphically.
- Students enjoyed the activities.
- The module changed how students view engineering.

Assessment

Email survey for Engr 110X:

"I have an understanding of the systems thinking pillar..."

Assessment

Ratings from 3 instructors of student work in Engr 210X

ST in LC?

Observations and suggestions:

- 1. Students tend to get information from their own heads.
 - a. Coach them to find an article or two, or
 - b. Use a topic that is familiar.
- 2. Students need coaching with key variable and feedback.

Summary: The module is...

Broadly applicable

Amenable to short treatments

New for students

Fun