The National Content Standards for K-12 Engineering/Engineering Technology initial development meeting convened by the Corporate Member Council (CMC) of the American Society of Engineering Education (ASEE) and the National Association of State Directors of Career Technical Education Consortium (NASDCTEc) was held Sunday, October 15 through Wednesday, October 18, 2006 at the Peabody Court Hotel, Baltimore, MD. The meeting was attended by the following groups and produced the first draft of the National Content Standards for K-12 Engineering/Engineering Technology.

Ashok Agrawal
St. Louis Community College

Dr. Norman Fortenberry
National Academy of Engineering (NAE)

Eugenio Basualdo, D.Ed.
New York State United Teachers (NYSUT/AFT)

Nancy Greco
IBM

Richard Blais
Project Lead The Way

Richard Grimsley
Project Lead The Way

Dr. Laura Bottomley
ASEE

Kevin Hamilton
CISCO Systems

Sheri Brodeur
Hewlett-Packard Co

Rick Larkey
National Alliance for Partnerships in Equity (NAPE)

Phyllis S. Buchanan
DuPont

Jan Morrison
Johns Hopkins University/TIES

Barry Burke, DTE
Engineering by Design

Dr. Ray Morrison
Lockheed Martin Aeronautics Co.

Judy Cara
Intel

Pam B. Newberry
Project Lead The Way

Cheryl Carrier
Ford

Michael O'Hair, Ed.D.
Purdue University

Sam Cox
Project Lead The Way

Frank Owens
National Science Teachers Association

Patricia Currier
NASA

Greg Pearson
National Academy of Engineering (NAE)

Dr. Martha Cyr
Worcester Polytechnic Institute

Erin Peters, NBCT
NASA
K-12 Engineering/Engineering Technology Standards

Chell Roberts
Arizona State University East

Tom White
Project Lead The Way

Jim Rubillo
National Council of Teachers of Mathematics

Richard Wright
Lockheed Martin Aeronautics Co.

Mike Shannon, P.E.
National Council of Examiners for Engineering and Surveying (NCEES)

Leann Yoder
American Association of Engineering Societies (AAES)

Nancy Shaw
Duke University

Malinda Zarske
Integrated Teaching and Learning Lab (University of Colorado At Boulder)

Deborah Shuler, M.S.
Sinclair Community College

Steve Smalley
Northrop Grumman

Anne Spence, Ph.D.
University of Maryland, Baltimore Co.

Yvonne Spicer, Ed.D
National Center for Technological Literacy®

Ken Starkman
International Technology Education Association (ITEA)

Gary Stewardson, Ph.D.
Utah State University & NCETE

Joe Tidwell
Corporate & Industry Partnership (CIP) of ASEE

Samuel Truesdale
Rolls-Royce Corporation
Dimension 1: Engineering Design

Standard:
Students will develop an understanding of engineering design.

Declarative (Understands):
- Students will understand the basic concept of:
 - Design and how to conduct experiments, as well as to analyze and interpret data as it relates to engineering design.
 - Designing, testing, and building a system, component, or process to meet desired needs within realistic constraints.
 - Identifying and formulating engineering problems as they relate to engineering design.
 - Applying iteration as a part of an engineering design process.
 - Suggesting and evaluating alternative solutions.
 - Optimizing a solution as it relates to engineering design.
 - Problem solving and that not all problems can be solved with engineering design.
 - Optimal solutions depend on outcomes and perspectives. For example, engineers, funding sources, project managers, and political and others are potential influences on outcomes or solutions.

Procedural (Will be or is able to):
- Students will apply the engineering design process, troubleshooting, research and development, invention and innovation, and experimentation in problem solving and engineering design.

Students will:
- Learn that the engineering design process includes defining a problem, brainstorming, researching and generating ideas, identifying criteria and specifying constraints, exploring possibilities, selecting an approach, developing a design proposal, making a model or prototype, testing and evaluating the design using specifications, refining the design, creating or making it, and communicating processes and results.
- Ask questions and make observations to help figure out how things work.
- Learn that all products and systems are subject to failure and that many products and systems can be fixed.
- Troubleshoot as a way of finding out why something does not work so that it can be fixed.
- Use the process of experimentation, which is common in science, to solve engineering problems.
- Apply the engineering design process using a variety of strategies, such as problem-solving, creative thinking, visual imagery, critical thinking, and reasoning.
- Apply invention as a process of turning ideas and imagination into devices and systems.
- Apply innovation to modify an existing product or system to improve it.
- Apply research and development as a specific problem-solving approach.
Dimension 2: Connecting Engineering to Science, Technology, and Mathematics

<table>
<thead>
<tr>
<th>Declarative (Understands)</th>
<th>Procedural (Will be or is able to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard: Students will develop an understanding of the essential concepts of and how to apply science, technology, and mathematics as they pertain to engineering design.</td>
<td>Standard: Students will be able to apply concepts of science, technology, and mathematics in an engineering design process.</td>
</tr>
</tbody>
</table>

Students will develop the

- Understanding of selected concepts from established science, technology, and mathematics standards.
- Through multiple experiences, students will
 a. Understand basic concepts of science, such as, inquiry, biological processes, chemical reactions, motions and forces, and interactions of energy and matter.
 b. Understand properties of materials and how conditions affect those properties
 c. Understand complex systems and their constituent parts and how they are used in a number of ways in daily life, such as, in solar, political, civil, and technological systems.
 d. Understand technological concepts, such as, models are used to communicate and test design ideas and processes.
 e. Understand physical science, such as, chemical reactions, motions and forces, and interactions of energy and matter.
 f. Understand mathematical concepts, such as, innumeracy, algebraic equations, and probability and estimation.
- Understanding that engineering is connected to other fields of study, such as, the humanities and social sciences.

- Apply their knowledge of science, technology, engineering, and mathematics when solving practical problems.
- Analyze and solve formulated engineering problems.
- Use contemporary engineering tools, such as, computer-aided drawing (CAD), computer aided manufacturing (CAM), calculators, and spreadsheets to communicate and demonstrate their use of science, technology, and mathematics knowledge.
Dimension 2: Connecting Engineering to Science, Technology, and Mathematics

<table>
<thead>
<tr>
<th>Declarative (Understands)</th>
<th>Procedural (Will be or is able to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding of how knowledge acquired in one context, such as biology, is applied in another context, such as biotechnology. For example, the biotechnology industry is learning the importance of properly applying production techniques with bioprocesses and the problems that can occur in producing a product.</td>
<td></td>
</tr>
<tr>
<td>Understanding of how things work or why things work the way they do and how design solutions rely upon the knowledge of science, technology, and mathematics and prior results. a. System thinking involves thinking about things as systems, which means looking for how every part relates to others. b. Something may not work well or at all if a part of it is missing, broken, worn out, mismatched, or mismatched.</td>
<td></td>
</tr>
</tbody>
</table>
Dimension 3: Nature of Engineering

Declarative (Understands)

Standard: Students will develop an understanding of the characteristics and broad scope of engineering.

Students will understand that
- Engineering is the knowledge of natural science and mathematics gained by study, experience, and practice that are applied with creativity and judgment to develop ways to utilize the materials and forces of nature for the benefit of human kind.
- An engineer is a person who is trained in and uses scientific and technological knowledge to solve practical problems.
- Public perception of engineers and engineering among global cultures is diverse and not consistent.
- Engineering and engineering technology disciplines have a common core of knowledge and areas of specializations.
- Engineering and human capabilities are in a cyclical relationship that influences each other over time.
- Engineering permeates all aspects of society.
- Engineering solutions have continually improved the quality of life, added business value, and significantly influenced the global economy.
- Engineering has intended and unintended consequences.
- Lifelong learning results in purposeful experiences in science, technology, engineering, and mathematics that lead to doing reflections of and building on prior knowledge in order to make improvements to human existence.
- Humankind has the inherent need to engineer.

Procedural (Will be or is able to)

Standard: Students will be able to be creative and innovative in their thought process and actions.

Students will
- Use engineering as a vehicle for creative and critical thinking and inquiry.
- Logically segment problems and opportunities from an engineering perspective to derive effective solutions.
- Show how to integrate the knowledge from diverse sources and experiences into practice in order to consider how to solve practical problems.
- Explain what engineers do in order to solve practical problems and the reasons there is a need for diversity in engineering.
Dimension 4: Communication and Teamwork

The following topics are the initial ideas that lead to this dimension:

- Technical Drawings & Sketching
- Basic Computer Skills
- Computing Language (Consider moving to toolbox)

<table>
<thead>
<tr>
<th>Declarative (Understands)</th>
<th>Procedural (Will be or is able to)</th>
</tr>
</thead>
</table>
| **Standard:** Students will develop an understanding that engineers need to communicate effectively as individuals and as members of a team. **Students will understand that**
- Complex problems are better solved by teams rather than by individuals.
- Effective individual and group communication skills are learned attributes.
- Roles of team members are an important aspect in learning to work collaboratively and cooperatively.
- Engineers use universal standardized symbolic languages to communicate, such as, mathematical equations, drafting standards, American Society of Heating, Refrigerating, and Air-condition Engineers, Inc. (ASHRAE) Handbook, American National Standards Institute (ANSI) Standards, and related professional codes.
- Engineered outcomes must be documented to accepted standards with precision in order to aid in avoiding unnecessary harm.
- Communication of ideas is effective when proper media is used.
- Multidisciplinary and cross-functional teams bring a variety of skills and perspectives that enhance the engineering process. | **Standard:** Students are able to use effective communication and teamwork skills to acquire information and convey engineered outcomes to a variety of stakeholders. **Students will be able to**
- Use appropriate communication procedures, such as, research, presentations, and documentation protocols.
 a. Follow patent process and recognize the need for proper documentation.
 b. Follow drafting standards and recognize the need for following procedures and protocols.
 c. Use professional standards, such as ANSI and ASHRAE to aid communication.
 d. Follow professional codes, such as, those for the International Fire Code (IFC).
 e. Follow style manuals in writing, such as, those provided by the American Psychological Association (APA) publication manual.
- Communicate effectively using multiple media.
- Practice interpersonal and group dynamic skills, such as, cooperate with others, advocate and influence, resolve conflict, and negotiate.
- Function on multidisciplinary and cross-functional teams. |
Dimension 5: Engineering and Society

The following topics are the initial ideas that lead to this dimension:

- Human Factor
- Attitude

<table>
<thead>
<tr>
<th>Declarative (Understands)</th>
<th>Procedural (Will be or is able to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard: Students will develop an understanding that engineering is an ethical human endeavor that addresses the needs of a global society.</td>
<td>Standard: Students will be able to investigate and analyze the impact of engineering on a global society.</td>
</tr>
</tbody>
</table>

Students will understand that

- Engineering is a human endeavor that has always been practiced as long as humans have had needs.
- Results and use of engineered products and systems impact global, economic, cultural, environmental, and societal contexts in both expected and unexpected ways.
- Professional ethics and societal obligations and responsibilities must be considered in the development and use of engineered solutions to human needs and wants, such as, safety, health, comfort, and mobility.
- Engineering itself is neither positive nor negative, but the use of engineered outcomes can have desirable and undesirable consequences.
- Development and use of engineered products and systems affect the way people of different cultures live, the kind of work they do, and the decisions they have to make.
- Public perception of engineering and of engineers among global cultures varies greatly depending on the historical impacts and the desirable and undesirable engineered developments, such as advances in medicine, public health, consumer goods, resources, energy, and changes in social mores.

Students will

- Investigate and analyze the impact of engineering from multiple perspectives, such as, economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
- Identify constraints and external factors and explain how they impact engineering outcomes, such as, economic, societal attitudes, and optimization.
- Investigate and study the positive and negative results of engineering.
- Learn that ethical considerations are important in the development, selection, and use of engineered products and systems.
- Analyze the transfer of an engineered outcome from one society to another and how it may affect positively or negatively both societies, such as, the sharing of flash freezing of food and how societies changed as a result.